Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: New, intermediate-sized nodules in lung cancer screening undergo follow-up CT, but some of these will resolve. We evaluated the performance of a multi-view convolutional neural network (CNN) in distinguishing resolving and non-resolving new, intermediate-sized lung nodules.

Materials And Methods: This retrospective study utilized data on 344 intermediate-sized nodules (50-500 mm) in 250 participants from the NELSON (Dutch-Belgian Randomized Lung Cancer Screening) trial. We implemented four-fold cross-validation for model training and testing. A multi-view CNN model was developed by combining three two-dimensional (2D) CNN models and one three-dimensional (3D) CNN model. We used 2D, 2.5D, and 3D models for comparison. The models' performance was evaluated using sensitivity, specificity, and area under the ROC curve (AUC). Specificity, indicating what percentage of non-resolving nodules requiring follow-up can be correctly predicted, was maximized.

Results: Among all nodules, 18.3% (63) were resolving. The multi-view CNN model achieved an AUC of 0.81, with a mean sensitivity of 0.63 (SD, 0.15) and a mean specificity of 0.93 (SD, 0.02). The model significantly improved performance compared to 2D, 2.5D, or 3D models (p < 0.05). Under the premise of specificity greater than 90% (meaning < 10% of non-resolving nodules are incorrectly identified as resolving), follow-up CT in 14% of individuals could be prevented.

Conclusion: The multi-view CNN model achieved high specificity in discriminating new intermediate nodules that would need follow-up CT by identifying non-resolving nodules. After further validation and optimization, this model may assist with decision-making when new intermediate nodules are found in lung cancer screening.

Critical Relevance Statement: The multi-view CNN-based model has the potential to reduce unnecessary follow-up scans when new nodules are detected, aiding radiologists in making earlier, more informed decisions.

Key Points: Predicting the resolution of new intermediate lung nodules in lung cancer screening CT is a challenge. Our multi-view CNN model showed an AUC of 0.81, a specificity of 0.93, and a sensitivity of 0.63 at the nodule level. The multi-view model demonstrated a significant improvement in AUC compared to the three 2D models, one 2.5D model, and one 3D model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12205119PMC
http://dx.doi.org/10.1186/s13244-025-02000-xDOI Listing

Publication Analysis

Top Keywords

cnn model
16
multi-view cnn
12
intermediate-sized nodules
8
lung cancer
8
cancer screening
8
25d models
8
model
6
nodules
5
cnn
5
multi-view
4

Similar Publications

The increasing dependence on cloud computing as a cornerstone of modern technological infrastructures has introduced significant challenges in resource management. Traditional load-balancing techniques often prove inadequate in addressing cloud environments' dynamic and complex nature, resulting in suboptimal resource utilization and heightened operational costs. This paper presents a novel smart load-balancing strategy incorporating advanced techniques to mitigate these limitations.

View Article and Find Full Text PDF

In industrial scenarios, semantic segmentation of surface defects is vital for identifying, localizing, and delineating defects. However, new defect types constantly emerge with product iterations or process updates. Existing defect segmentation models lack incremental learning capabilities, and direct fine-tuning (FT) often leads to catastrophic forgetting.

View Article and Find Full Text PDF

Background: Lateral malleolar avulsion fracture (LMAF) and subfibular ossicle (SFO) are distinct entities that both present as small bone fragments near the lateral malleolus on imaging, yet require different treatment strategies. Clinical and radiological differentiation is challenging, which can impede timely and precise management. On imaging, magnetic resonance imaging (MRI) is the diagnostic gold standard for differentiating LMAF from SFO, whereas radiological differentiation on computed tomography (CT) alone is challenging in routine practice.

View Article and Find Full Text PDF

Introduction: Effective triage in the emergency department (ED) is essential for optimizing resource allocation, improving efficiency, and enhancing patient outcomes. Conventional systems rely heavily on clinical judgment and standardized guidelines, which may be insufficient under growing patient volumes and increasingly complex presentations.

Methods: We developed a machine learning triage model, MIGWO-XGBOOST, which incorporates a Multi-strategy Improved Gray Wolf Optimization (MIGWO) algorithm for parameter tuning.

View Article and Find Full Text PDF

The coffee roasting process is a critical factor in determining the final quality of the beverage, influencing its flavour, aroma, and acidity. Traditionally, roast-level classification has relied on manual inspection, which is time-consuming, subjective, and prone to inconsistencies. However, advancements in machine learning (ML) and computer vision, particularly convolutional neural networks (CNNs), have shown great promise in automating and improving the accuracy of this process.

View Article and Find Full Text PDF