Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Proprioception is essential for coordinating human movements and enhancing the performance of assistive robotic devices. Skin stretch feedback, which is used within natural proprioception mechanisms, presents a promising method for conveying proprioceptive information. To better understand the impact of interference on skin stretch perception and to provide insights into how to best balance between perception performance and the workload required for its understanding, we conducted a user study with 30 participants that evaluated the effect of two simultaneous skin stretches on the user's ability to perceive changes in skin stretch and the associated perceived workload. We observed that when participants experience simultaneous skin stretch stimuli, a masking effect occurs which deteriorates perception performance in the collocated skin stretch configurations without changing the perception of workload. These findings imply that multi-channel skin stretch designs should avoid locating modules in close proximity due to the lower sensitivity in perception.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TOH.2025.3583736DOI Listing

Publication Analysis

Top Keywords

skin stretch
24
skin
8
skin stretches
8
perception performance
8
simultaneous skin
8
stretch
6
perception
5
exploring interference
4
interference concurrent
4
concurrent skin
4

Similar Publications

Prior findings indicate that individuals who stutter do not show the typical modulation of auditory processing that is observed during speech movement planning in nonstuttering speakers. We now ask whether this lack of planning-related sensory modulation in stuttering adults is specific to the auditory domain. In this first study (15 stuttering and 15 nonstuttering participants), we implemented the prior stimulation timeline in a paradigm with orofacial skin stretch stimuli.

View Article and Find Full Text PDF

Reversible increased basement membrane permeability and calcium ion redistribution facilitate ultrasound-enhanced transdermal drug delivery efficiency.

Int J Pharm

September 2025

Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, People's Republic of China; Engineering Research Center of Intelligent Theranostics Technology and Instruments, Ministry of Education, People's Republic of China. Electronic address:

Background: Ultrasound-assisted transdermal drug delivery, or sonophoresis, enhances skin permeability, offering a non-invasive alternative for drug administration. However, its clinical application remains limited because of an insufficient understanding of its underlying mechanisms and optimal parameters. This study investigates the factors influencing ultrasound-enhanced drug absorption and examines its biological effects on skin structures and HaCaT cells, providing a comprehensive analysis of its mechanisms.

View Article and Find Full Text PDF

Strain-Insensitive, Crosstalk-Suppressed, Ultrawide-Linearity Iontronic Tactile Skin from a Synergistic Segment-Embedded Strategy.

ACS Sens

September 2025

The State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

Tactile sensing arrays play a crucial role in human-machine interaction, robotics, and artificial intelligence by enabling the perception of physical stimuli on robotic surfaces or human skin. However, skin-attachable sensor arrays still suffer from strain interference and signal crosstalk under stretching or bending, particularly on curved or deformable surfaces. Here, we present a stretchable tactile array that is both strain-insensitive and crosstalk-suppressed, achieved via a hierarchically segmented design that mitigates lateral and vertical deformations synergistically.

View Article and Find Full Text PDF

Desmosomes (DSMs) are intercellular junctions essential for providing mechanical resilience to tissues, particularly the epidermis. Desmoplakin (DP) is a key DSM protein which anchors plaque proteins to keratins, thereby ensuring tissue integrity under mechanical stress. Clinically, DP mutations impair keratinocyte adhesion and structural integrity, leading to skin fragility disorders.

View Article and Find Full Text PDF

Strain-based biomarkers at the skin surface differentiate asymmetries in soft tissue mobility associated with myofascial pain.

J Mech Behav Biomed Mater

August 2025

Mechanical and Aerospace Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA, USA; Systems and Information Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA, USA. Electronic address:

Soft tissue manipulation is used widely to assess myofascial tissue qualitatively but lacks objective measures. To quantify the mobility of myofascial tissue, this effort derives optical biomarkers from the skin surface, as observed in the hands-on workflow of clinicians. Digital image correlation using three high-resolution cameras captures the cervicothoracic region as a clinician deeply engages and stretches the skin and myofascial tissue.

View Article and Find Full Text PDF