Disruptions in primary visual cortex physiology and function in a mouse model of Timothy syndrome.

Cereb Cortex

School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, United Kingdom.

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Timothy syndrome (TS) is a rare genetic disorder caused by mutations in the CACNA1C gene, which encodes the L-type calcium channel α1 CaV1.2 subunit. While it is expressed throughout the body, the most serious symptoms are cardiac and neurological. Classical TS type 1 (TS1) and TS type 2 (TS2) mutations cause prolonged action potentials (APs) in cardiomyocytes and in induced neurons derived from pluripotent stem cells taken from TS patients, but the effects of TS mutations on neuronal function in vivo are not fully understood. TS is frequently associated with autistic traits, which in turn have been linked to altered sensory processing. Using the TS2-neo mouse model, we analyzed the effects of TS2 mutation on the visual system. We observed a widening of APs of pyramidal cells in ex vivo patch clamp recordings and an increase in the density of parvalbumin-positive cells in the primary visual cortex. Neurons from TS2-neo mice recorded extracellularly in vivo were less likely to respond to visual stimuli of low spatial frequency, but more likely to respond to visual stimuli of mid-to-high spatial frequency, compared to those from wild-type mice. These results point to a basic processing abnormality in the visual cortex of TS2-neo mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12203796PMC
http://dx.doi.org/10.1093/cercor/bhaf162DOI Listing

Publication Analysis

Top Keywords

visual cortex
12
primary visual
8
mouse model
8
timothy syndrome
8
ts2-neo mice
8
respond visual
8
visual stimuli
8
spatial frequency
8
visual
6
disruptions primary
4

Similar Publications

This study aimed to identify brain activity modulations associated with different types of visual tracking using advanced functional magnetic resonance imaging techniques developed by the Human Connectome Project (HCP) consortium. Magnetic resonance imaging data were collected from 27 healthy volunteers using a 3-T scanner. During a single run, participants either fixated on a stationary visual target (fixation block) or tracked a smoothly moving or jumping target (smooth or saccadic tracking blocks), alternating across blocks.

View Article and Find Full Text PDF

Alpha oscillations have been implicated in the maintenance of working memory representations. Notably, when memorised content is spatially lateralised, the power of posterior alpha activity exhibits corresponding lateralisation during the retention interval, consistent with the retinotopic organisation of the visual cortex. Beyond power, alpha frequency has also been linked to memory performan ce, with faster alpha rhythms associated with enhanced retention.

View Article and Find Full Text PDF

Objective: To investigate the characteristics of brain structures in patients with noise-induced hearing loss (NIHL) using source-based morphometry (SBM) and to evaluate the correlation between abnormal brain regions and clinical data.

Methods: High-resolution 3D T1 structural images were acquired from 81 patients with NIHL and 74 age- and education level-matched healthy controls (HCs). The clinical data of all subjects were collected, including noise exposure time, monaural hearing threshold weighted values (MTWVs), Mini-Mental State Examination (MMSE), and Hamilton Anxiety Scale (HAMA) scores.

View Article and Find Full Text PDF

Studies of visual face processing often use flat images as proxies for real faces due to their ease of manipulation and experimental control. Although flat images capture many features of a face, they lack the rich three-dimensional (3D) structural information available when binocularly viewing real faces (e.g.

View Article and Find Full Text PDF

Unveiling the Riddoch phenomenon: a regression analysis of stroke-induced homonymous hemianopia.

Front Neurol

August 2025

Division of Neurology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.

Introduction: A subset of patients with homonymous hemianopia can consciously perceive motion within their blind visual fields-a phenomenon known as the Riddoch phenomenon. However, the factors predicting this residual motion perception remain poorly understood. This study aims to identify clinical and neuroanatomical predictors of the Riddoch phenomenon in stroke patients.

View Article and Find Full Text PDF