Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: This study aims to construct a single-cell transcriptomic atlas of the developing rabbit sclera to elucidate fibroblast heterogeneity, differentiation trajectories, matrisome expression patterns, and intercellular communication, while revealing conserved molecular features of scleral cells through cross-species analysis.

Methods: Single-cell RNA sequencing (scRNA-seq) was performed on scleral tissues from New Zealand rabbits at embryonic day 25 (E25) and postnatal days 7 (P7), 21 (P21), and 180 (P180). Libraries were prepared using the DNBelab C Series Kit and sequenced on the BGISEQ-2000 platform. Sequencing reads were aligned to the OryCun2.0 genome using STAR, and unique molecular identifier (UMI) count matrices were generated with PISA. Data preprocessing was conducted using Seurat. Fibroblast lineage differentiation was analyzed via VIA, intercellular communication via CellChat, matrisome expression patterns via AUCell, and cross-species analyses via CACIMAR and hdWGCNA.

Results: We identified 7 major cell types and 15 subpopulations, with fibroblasts dominating the cellular landscape. Distinct fibroblast subtypes exhibited varied expression profiles and functions: KERAlow SPARCL1⁺ fibroblasts showed stem/progenitor-like features, while KERAhigh myocilin (MYOC)⁺ fibroblasts displayed senescence-associated phenotypes. Matrisome analysis revealed dynamic alterations in collagen and extracellular matrix (ECM)-related genes, and intercellular communication analysis highlighted complex signaling networks, particularly the MDK/PTN pathway. Cross-species comparisons demonstrated high conservation of fibroblasts between rabbit and human sclera, identifying four conserved co-expression modules.

Conclusions: This study presents the first single-cell atlas of rabbit scleral development, unveiling fibroblast heterogeneity, ECM remodeling mechanisms, and cross-species conserved features. These findings enhance our understanding of scleral biology and provide valuable insights for future research on ocular development and associated diseases, including myopia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12212446PMC
http://dx.doi.org/10.1167/iovs.66.6.83DOI Listing

Publication Analysis

Top Keywords

intercellular communication
12
single-cell rna
8
rna sequencing
8
rabbit sclera
8
scleral cells
8
fibroblast heterogeneity
8
matrisome expression
8
expression patterns
8
scleral
5
fibroblasts
5

Similar Publications

Myostatin knockout mice muscle derived exosome inhibited dexamethasone-induced muscle atrophy.

Int Immunopharmacol

September 2025

Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji 133002, China. Electronic address:

Objective: Long-term administration of dexamethasone (DEX) to treat severe inflammation or autoimmune disorders often result in skeletal muscle atrophy and functional decline. Exosomes facilitate intercellular communication by transferring bioactive molecules, reflecting the characteristics of their tissue of origin. Myostatin-knockout (MSTN) mice exhibit muscle hypertrophy, and their muscle-derived exosomes (KO-EXOs) retain this phenotype.

View Article and Find Full Text PDF

Microglia regulate neuronal circuit plasticity. Disrupting their homeostatic function has detrimental effects on neuronal circuit health. Neuroinflammation contributes to the onset and progression of neurodegenerative diseases, including Alzheimer's disease (AD), with several microglial activation genes linked to increased risk for these conditions.

View Article and Find Full Text PDF

The arabidopsis WAVE/SCAR protein BRICK1 associates with cell edges and plasmodesmata.

PLoS One

September 2025

Department of Biology, The University of Saskatchewan, College of Arts and Science, Saskatoon, Canada.

Plasmodesmata are specialized structures in plant cell walls that mediate intercellular communication by regulating the trafficking of molecules between adjacent cells. The actin cytoskeleton plays a pivotal role in controlling plasmodesmatal permeability, but the molecular mechanisms underlying this regulation remain unclear. Here, we report that BRK1, a component of the WAVE/SCAR complex involved in Arp2/3-mediated actin nucleation, localizes to PD and primary pit fields in A.

View Article and Find Full Text PDF

High morbidity and mortality associated with human β-coronavirus (CoV) infection highlight the need to determine host responses to infection and develop anti-viral therapies. Gap junction intercellular communication (GJIC), particularly involving Connexin43 (Cx43), is vital for maintaining central nervous system (CNS) homeostasis, and disruption of GJIC is a well-documented pathogenic mechanism among β-coronaviruses. Specifically, murine β-coronavirus, mouse hepatitis virus (MHV-A59) inoculation in the mouse brain causes acute-stage CNS viral spread and chronic neuroinflammatory demyelination while causing pronounced downregulation of Cx43 at the acute stage, reflecting a critical role in CNS pathology.

View Article and Find Full Text PDF

Exosomes in Disease Therapy: Plant-Derived Exosome-Like Nanoparticles Current Status, Challenges, and Future Prospects.

Int J Nanomedicine

September 2025

State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China.

Exosomes are nano-sized extracellular vesicles secreted by diverse cell types that mediate intercellular communication through the transfer of proteins, lipids, and nucleic acids. Their ability to cross biological barriers and carry bioactive cargo has led to increasing interest in their use as targeted delivery systems for drugs, genes, and immunomodulatory molecules. Recently, plant-derived exosome-like nanoparticles, PLNs obtained from edible plants and medicinal herbs have emerged as a novel, biocompatible alternative to mammalian exosomes.

View Article and Find Full Text PDF