Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: Precise delineation of brain tissues, including lesions, in MR images is crucial for data analysis and objectively assessing conditions like neurological disorders and brain tumors. Existing methods for tissue segmentation often fall short in addressing patients with lesions, particularly those with brain tumors. This study aimed to develop and evaluate a robust pipeline utilizing convolutional neural networks for rapid and automatic segmentation of whole brain tissues, including tumor lesions.

Materials And Methods: The proposed pipeline was developed using BraTS'21 data (1251 patients) and tested on local hospital data (100 patients). Ground truth masks for lesions as well as brain tissues were generated. Two convolutional neural networks based on deep residual U-Net framework were trained for segmenting brain tissues and tumor lesions. The performance of the pipeline was evaluated on independent test data using dice similarity coefficient (DSC) and volume similarity (VS).

Results: The proposed pipeline achieved a mean DSC of 0.84 and a mean VS of 0.93 on the BraTS'21 test data set. On the local hospital test data set, it attained a mean DSC of 0.78 and a mean VS of 0.91. The proposed pipeline also generated satisfactory masks in cases where the SPM12 software performed inadequately.

Conclusions: The proposed pipeline offers a reliable and automatic solution for segmenting brain tissues and tumor lesions in MR images. Its adaptability makes it a valuable tool for both research and clinical applications, potentially streamlining workflows and enhancing the precision of analyses in neurological and oncological studies.

Download full-text PDF

Source
http://dx.doi.org/10.1097/RCT.0000000000001750DOI Listing

Publication Analysis

Top Keywords

brain tissues
20
proposed pipeline
16
test data
12
tissue segmentation
8
brain
8
tissues including
8
lesions images
8
brain tumors
8
convolutional neural
8
neural networks
8

Similar Publications

Background: To assess the efficacy and safety of tenecteplase in patients presenting within 24 hours of symptom onset with a large vessel occlusion and target mismatch on perfusion computed tomography.

Methods: ETERNAL-LVO was a prospective, randomized, open-label, blinded end point, phase 3, superiority trial where adult participants with a large vessel occlusion, presenting within 24 hours of onset with salvageable tissue on computed tomography perfusion, were randomized to tenecteplase 0.25 mg/kg or standard care across 11 primary and comprehensive stroke centers in Australia.

View Article and Find Full Text PDF

Introduction: Anti-N-methyl-D-aspartate receptor (NMDA-R) encephalitis is a neuropsychiatric disorder with additional psychiatric features caused by NMDA-R immunoglobulin G (IgG) antibodies in cerebrospinal fluid (CSF). This report presents the follow-up of a patient in whom we assumed mild NMDA-R encephalitis in the first psychotic episode.

Case Study: A patient with a prior episode of an acute polymorphic psychotic syndrome relapsed five and a half years later following a severe COVID-19 infection.

View Article and Find Full Text PDF

Brillouin microscopy allows mechanical investigations of biological materials at the subcellular level and can be integrated with Raman spectroscopy for simultaneous chemical mapping, thus enabling a more comprehensive interpretation of biomechanics. The present study investigates different in vitro glioblastoma models using a combination of Brillouin and Raman microspectroscopy. Spheroids of the U87-MG cell line and two patient-derived cell lines as well as patient-derived organoids were used.

View Article and Find Full Text PDF

Background: Functional and structural studies of the brain highlight the importance of white matter alterations in schizophrenia. However, molecular studies of the alterations associated with the disease remain insufficient.

Aim: To study the lipidome and transcriptome composition of the corpus callosum in schizophrenia, including analyzing a larger number of biochemical lipid compounds and their spatial distribution in brain sections, and corpus callosum transcriptome data.

View Article and Find Full Text PDF

Background And Objective: Parental chromosomal structural variations (SVs) represent a primary genetic factor contributing to recurrent spontaneous abortion (RSA). Individuals carrying SVs with complex chromosomal rearrangements (CCRs) typically exhibit a normal phenotype but are at an increased risk of miscarriage. Current standard clinical detection methods are insufficient for the identification and interpretation of all SV types, particularly complex and occult SVs, thereby presenting a significant challenge for clinical genetic counseling.

View Article and Find Full Text PDF