Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Although lithium-ion batteries have achieved widespread commercial success, they are not suitable for large-scale energy applications due to limited lithium resources and relatively high cost. In this context, aqueous zinc-ion batteries (AZIBs) have emerged as promising alternatives, offering advantages such as cost-effectiveness, superior safety and a simplified manufacturing process. Nevertheless, AZIBs currently face a series of critical challenges, including uncontrolled dendrite growth, low zinc utilization efficiency and notorious side reactions. To address these concerns, extensive research efforts have been made to develop innovative electrolyte formulation strategies, with a strong emphasis on electrolyte additives owing to simplicity, adaptability and exceptional versatility. This review provides a comprehensive and systematic analysis of recent advancements in electrolyte additive engineering for AZIBs, highlighting their immense potential in addressing key challenges and offering critical insights into regulation mechanisms, practical applications and future directions for advancing performance and sustainability. Furthermore, an in-depth comprehensive and systematic summary of the latest advancements is provided in detail. Overall, this review aims to inspire innovative research and accelerate AZIBs development for next-generation energy storage applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d5cc02302eDOI Listing

Publication Analysis

Top Keywords

electrolyte additives
8
aqueous zinc-ion
8
zinc-ion batteries
8
comprehensive systematic
8
advances perspectives
4
electrolyte
4
perspectives electrolyte
4
additives enhanced
4
enhanced anode
4
anode reversibility
4

Similar Publications

Thermopower regulation of thermocells electrolyte engineering: progress and prospects.

Chem Commun (Camb)

September 2025

Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China.

Thermocells (TECs) represent a promising technology for sustainable low-grade waste heat (<100 °C) harvesting, offering distinct advantages such as scalability, structural versatility, and high thermopower. However, their practical applications are still hindered by low energy conversion efficiency and stability issues. In recent studies, electrolyte engineering has been highlighted as a critical strategy to enhance their thermopower by regulating the solvation structure and redox ion concentration gradient, thereby improving conversion efficiency.

View Article and Find Full Text PDF

Single-Molecule Dual-Anchor Design Enables Extreme-Condition Lithium Metal Batteries Through Solvation Reconstruction and Cathode Polymerization.

Angew Chem Int Ed Engl

September 2025

State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology, Beijing, 10029, P.R. China.

Lithium metal batteries (LMBs) have emerged as the most promising candidate for next-generation high-energy-density energy storage systems. However, their practical implementation is hindered by the inability of conventional carbonate electrolytes to simultaneously stabilize the lithium metal anode and LiNiCoMnO (NCM811) cathode interfaces, particularly under extreme operating conditions. Herein, we present a transformative molecular design using 3,5-difluorophenylboronic acid neopentyl glycol ester (DNE), which uniquely integrates dual interfacial stabilization mechanisms in a single molecule.

View Article and Find Full Text PDF

Monoclonal antibodies (mAb) have transformed modern medicine, offering targeted therapies for cancer, autoimmune disorders, and infectious diseases. To enhance patient convenience, subcutaneous administration is increasingly prioritized, requiring highly concentrated formulations. However, high viscosity of these formulations hinders manufacturability, injectability, and stability.

View Article and Find Full Text PDF

Background: Malaria is one of the most infectious diseases, and electrolyte imbalance and mineral disturbances are common clinical manifestations. This study aimed to explore the effect of malaria on biochemical parameters in Sudanese patients with severe falciparum malaria.

Methods: A case-control study was conducted in the clinical laboratory of the Kosti Teaching Hospital between August 2022 and January 2023.

View Article and Find Full Text PDF