Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Reasonable welding methods are of great significance for optimizing the microstructure and ensuring the mechanical properties of welded joints. In this study, ultra-narrow gap welding (UNGW) and submerged arc welding (SAW) were employed to weld Q355E high-strength low-alloy (HSLA) steel thick plates, and the microstructure and mechanical properties of the welded joints were systematically characterized. The UNGW welded joint exhibits superior comprehensive mechanical properties: a room-temperature tensile strength of 664 MPa with 43.1% elongation at fracture, along with higher microhardness and enhanced impact performance at -40 °C, all of which significantly outperform SAW welded joints. This advantage primarily stems from the faster cooling rate during UNGW, which promotes the formation of beneficial acicular ferrite in the joint microstructure. This study provides theoretical support and technical guidance for welding HSLA steel thick plates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12195550PMC
http://dx.doi.org/10.3390/ma18122805DOI Listing

Publication Analysis

Top Keywords

mechanical properties
16
hsla steel
12
welded joints
12
microstructure mechanical
8
properties welded
8
steel thick
8
thick plates
8
comparison microstructure
4
mechanical
4
properties
4

Similar Publications

Human gastroids to model regional patterning in early stomach development.

Nature

September 2025

Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, China.

The human stomach features distinct, regionalized functionalities along the anterior-posterior axis. Historically, studies on stomach patterning have used animal models to identify the underlying principles. Recently, human pluripotent stem (hPS)-cell-based gastric organoids for modelling domain-specific development of the fundic and antral epithelium are emerging.

View Article and Find Full Text PDF

Antioxidants: The Chemical Complexity Behind a Simple Word.

Acc Chem Res

September 2025

Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Ave. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A sección, Alcaldía Iztapalapa, 09310 Mexico City, Mexico.

ConspectusWhat does the word antioxidant mean? Antioxidants are supposed to be nontoxic, versatile molecules capable of counteracting the damaging effects of oxidative stress (OS). Thus, when evaluating a candidate molecule as an antioxidant, several aspects should be considered. Antioxidants are more than free radical scavengers.

View Article and Find Full Text PDF

Zirconium disilicide (ZrSi) ceramics have excellent physical and chemical properties and are employed in aerospace, energy, and chemical industries. Currently, the preparation and properties of ZrSi ceramics have been less studied. To comprehensively study the characteristics of ZrSi ceramics, in this study, dense bulk ZrSi ceramic samples are successfully prepared by the high-pressure-high-temperature (HPHT) sintering technique.

View Article and Find Full Text PDF

Statement Of Problem: Although custom temporomandibular joint (TMJ) prostheses manufactured via computer-aided design and manufacturing (CAD-CAM) and produced through 3-dimensional (3D) printing or computer numerical control (CNC) allow for sagittal curvature adjustments in the glenoid fossa, their design remains unregulated by the Food and Drug Administration. Consequently, the geometry is determined largely by the engineer's discretion, with limited biomechanical evidence to guide these decisions. The lack of validation regarding how sagittal curvature influences joint stress distribution under various anatomical and functional conditions represents a gap in current knowledge that warrants investigation.

View Article and Find Full Text PDF

Latent fingermark recovery in a simulated café setting: an exploratory study of cyanoacrylate fuming on disposable nonporous plastic and semiporous paper cups.

Sci Justice

September 2025

Department of Police Administration, Daegu University, PO Box 38453, Daegu, South Korea; Department of Policing & Security, Rabdan Academy, PO Box 114646, Abu Dhabi, United Arab Emirates. Electronic address:

Latent fingermark recovery from beverage containers is an important aspect of forensic investigations, yet the influence of substrate properties and beverage temperatures on fingermark development remains understudied. This exploratory study assessed the development and quality of latent fingermarks on disposable beverage cups made of nonporous plastic and semiporous paper using cyanoacrylate (CA) fuming, under conditions approximating a typical café environment. A total of 255 cups (107 plastic, 148 paper) were collected after participants consumed hot and iced beverages in a controlled classroom setting.

View Article and Find Full Text PDF