Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To investigate the immunomodulatory activity of polysaccharides derived from the rhizome of , polysaccharides (IRPs-H) were extracted using hot water extraction and further purified via DEAE-52 ion-exchange chromatography, yielding three fractions: IRPs-H1, IRPs-H2, and IRPs-H3. The structural features of these fractions were characterized by Fourier-transform infrared spectroscopy (FT-IR), high-performance gel permeation chromatography (HPGPC), atomic force microscopy (AFM), and thermogravimetric analysis (TGA). Their immunological activities were evaluated in vitro. All three fractions were identified as neutral pyranose-type polysaccharides, primarily composed of glucose and xylose, exhibiting good thermal stability and lacking long-chain structures. In vitro assays using RAW264.7 macrophages demonstrated that these polysaccharides promoted cell proliferation (50-800 μg/mL), enhanced phagocytic activity, and induced morphological changes characteristic of macrophage activation, including irregular shapes and pseudopod formation. ELISA and flow cytometry analyses revealed dose-dependent increases in nitric oxide (NO), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and reactive oxygen species (ROS) levels. Notably, the IRPs-H3 fraction stimulated TNF-α and IL-6 production to levels of 438.02 ± 14.14 pg/mL and 30.13 ± 1.27 pg/mL, respectively, which were comparable to those induced by lipopolysaccharide (LPS), the positive control (460.83 ± 16.10 pg/mL and 31.87 ± 1.72 pg/mL, respectively). These results suggest that polysaccharides extracted from the rhizome of possess significant immunostimulatory properties and hold potential for development as functional food ingredients or immune-enhancing agents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12196063PMC
http://dx.doi.org/10.3390/molecules30122635DOI Listing

Publication Analysis

Top Keywords

activity polysaccharides
8
hot water
8
water extraction
8
three fractions
8
polysaccharides
6
chemical profiling
4
profiling immunological
4
immunological activity
4
polysaccharides rhizome
4
rhizome hot
4

Similar Publications

Radiation exposure initiates a cascade of reactions, including the release of reactive oxygen species, DNA double-strand breaks, and cellular apoptosis, leading to cell death, tissue damage, and potentially the development of cancer. Consequently, there is an urgent need to develop highly effective and low-toxicity radioprotective agents. Traditional chemically synthesized protective agents face significant limitations in clinical applicability due to their pronounced off-target toxicity, narrow therapeutic window, and high production costs.

View Article and Find Full Text PDF

Background: Candidiasis, predominantly caused by , poses a significant global health challenge, especially in tropical regions. Nystatin is a potent antifungal agent that is hindered by its low solubility and permeability, limiting its clinical efficacy.

Methods: This study aimed to investigate the potential of a layer-by-layer (LBL) coating system, employing chitosan and alginate, to improve the stability, entrapment efficiency (%EE), and antifungal efficacy of nystatin-loaded liposomes against Candida albicans.

View Article and Find Full Text PDF

Staphylococcus epidermidis is recognized as the major cause of implanted indwelling medical device-related infections. The ability of S. epidermidis to form biofilms largely increases its resistance to conventional antibiotics, which is the major cause of treatment failure.

View Article and Find Full Text PDF

We explored the role of Polygonatum Rhizoma polysaccharide (PRP) in delaying aging and improving Alzheimer's disease (AD) and revealed its potential molecular mechanism. Through chemical characterizations to clarify the physicochemical properties of PRP, it was found that PRP mainly consists of mannose, glucose, galactose, and arabinose, with molecular weights ranging from 7.4 × 10 to 9.

View Article and Find Full Text PDF

This review examines the chemical and ecological interactions between filter-feeding mussels and the green macroalga Ulva prolifera in integrated multi-trophic aquaculture (IMTA) systems. Mussels are crucial for nutrient recycling, as they filter water and release bioavailable compounds such as ammonium (NH), urea (CO(NH)), and dissolved organic matter (DOM). These compounds promote Ulva growth and enhance microbial activity.

View Article and Find Full Text PDF