Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The safety concerns associated with sensitivity issues regarding long nitrogen chain-based energetic compounds, especially for eight or more catenated nitrogen atoms in backbones, need to be resolved. Incorporating specific functional groups represents a key approach for enhancing stability in organic energetic materials. This study reports the synthesis of 1,1'-(diazene-1,2-diyl)bis(4-nitro-1H-1,2,3-triazole-5-carboxamide) (), an N8-chain compound featuring strategically placed amide groups. Employing THA(-tosylhydroxylamine) and KMnO, 1,1'-(diazene-1,2-diyl)bis(4-nitro-1H-1,2,3-triazole-5-carboxamide) () was synthesized and underwent N-amination and oxidative azo coupling. Comprehensive characterization, including X-ray diffraction, mechanical sensitivity testing, and theoretical analysis, alongside comparative studies with known N8 compounds, revealed that S8 exhibits unprecedented stability within its class. Among reported N8-catenated nitrogen chain compounds, attributed to the incorporation of the amide functionality, demonstrates the highest impact sensitivity (IS = 10 J) and friction sensitivity (FS = 40 N) while maintaining excellent detonation performance ( = 8317 ms, = 28.27 GPa). This work highlights the amide group as a critical structural part for achieving high stability in sensitive long-nitrogen-chain energetic materials without compromising performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12195902PMC
http://dx.doi.org/10.3390/molecules30122589DOI Listing

Publication Analysis

Top Keywords

energetic materials
8
11'-diazene-12-diylbis4-nitro-1h-123-triazole-5-carboxamide n8-type
4
energetic
4
n8-type energetic
4
energetic compound
4
compound enhanced
4
enhanced molecular
4
stability
4
molecular stability
4
stability safety
4

Similar Publications

Engineering Covalent and Noncovalent Interface Synergy in MXenes for Ultralong-life and Efficient Energy Storage.

Angew Chem Int Ed Engl

September 2025

Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P.R. China.

MXenes serve as pivotal candidates for pseudocapacitive energy storage owing to sound proton/electron-transport capability and tunable topology. However, the metastable surface terminal properties and the progressive oxidation leads to drastic capacity fading, posing significant challenges for sustainable energy applications. Here, with the aramid nanofiber as the interface mediator, we engineer the thermal reconstruction of MXenes to synergistically introduce interfacial covalent and noncovalent interactions, resulting in a high specific capacitance of 531.

View Article and Find Full Text PDF

The concept of the circular bioeconomy is a carbon neutral, sustainable system with zero waste. One vision for such an economy is based upon lignocellulosic biomass. This lignocellulosic circular bioeconomy requires CO absorption from biomass growth and the efficient deconstruction of recalcitrant biomass into solubilized and fractionated biopolymers which are then used as precursors for the sustainable production of high-quality liquid fuels, chemical bioproducts and bio-based materials.

View Article and Find Full Text PDF

Bifunctional integration of indoor organic photovoltaics (OPVs) and photodetectors (OPDs) faces fundamental challenges because of incompatible interfacial thermodynamics: indoor OPVs require unimpeded charge extraction under low-light conditions (200-1000 lx), whereas OPDs require stringent suppression of noise current. Conventional hole transport layers (HTLs) fail to satisfy these opposing charge-dynamic requirements concurrently with commercial practicality (large-area uniformity, photostability, and cost-effective manufacturability). This study introduces benzene-phosphonic acid (BPA)-a minimalist self-assembled monolayer (SAM)-based HTL with a benzene core and phosphonic acid anchoring group-enabling cost-effective synthesis and excellent ITO interfacial properties such as energy alignment, uniform monolayer, and stability.

View Article and Find Full Text PDF

Context: High-nitrogen polycyclic compounds have become a research hotspot in the design of new energetic molecules due to their dense nitrogen content, high positive enthalpy of formation, and good structural stability. In particular, the fused structures of triazole and triazine heterocycles can not only enhance energy output but also possess excellent thermal stability. This study focuses on three triazolotriazine energetic compounds: 3,7-dinitro-[1,2,4]triazolo[5,1-c][1,2,4]triazin-4-amine (TTX), 7-nitro-3-(1H-tetrazol-5-yl)-[1,2,4]triazolo[5,1-c][1,2,4]triazin-4-amine (compound 1), and 3,3'-dinitro-[7,7'-bi[1,2,4]triazolo[5,1-c][1,2,4]triazine]-4,4'-diamine (compound 2).

View Article and Find Full Text PDF

Comparative radiation dose analysis in pediatric high-pitch cardiac CTA using photon-counting versus energy-integrating detector CT.

Pediatr Radiol

September 2025

Department of Radiology, University of Colorado School of Medicine/Department of Pediatric Radiology, Children's Hospital Colorado, 13123 East 16th Avenue, Box 125, Aurora, 80045, Colorado, USA.

Background: Previous studies have shown improved image quality in pediatric cardiac imaging using photon-counting detector CT (PCDCT). However, these studies did not evaluate image quality and radiation dose when utilizing the full spectral capabilities of PCDCT scanners. The full spectral capability of PCDCT scanners allows the generation of the entire array of mono-energetic reconstructions, virtual non-contrast (VNC) images, and iodine maps, which have potential advantages in evaluating complex congenital heart disease.

View Article and Find Full Text PDF