Compaction-Aware Flash Memory Remapping for Key-Value Stores.

Micromachines (Basel)

School of Computer Science and Artificial Intelligence, Wuhan University of Technology, Wuhan 430070, China.

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

With the rapid development of big data and artificial intelligence, the demand for memory has exploded. As a key data structure in modern databases and distributed storage systems, the Log-Structured Merge Tree (LSM-tree) has been widely employed (such as LevelDB, RocksDB, etc.) in systems based on key-value pairs due to its efficient writing performance. In LSM-tree-based KV stores, typically deployed on systems with DRAM-SSD storage, the KV items are first organized into MemTable as buffer for SSTables in main memory. When the buffer size exceeds the threshold, MemTable is flushed to the SSD and reorganized into an SSTable, which is then passed down level by level through compaction. However, the compaction degrades write performance and SSD endurance due to significant write amplification. To address this issue, recent proposals have mostly focused on redesigning the structure of LSM trees. We discover the prevalence of unchanged data blocks (UDBs) in the LSM-tree compaction process, i.e., UDBs are written back to SSD the same as they are read into memory, which induces extra write amplification and degrades I/O performance. In this paper, we propose a KV store design in SSD, called RemapCom, to exploit remapping on these UDBs. RemapCom first identifies UDBs with a lightweight state machine integrated into the compaction merge process. In order to increase the ratio of UDBs, RemapCom further designs a UDB retention method to further develop the benefit of remapping. Moreover, we implement a prototype of RemapCom on LevelDB by providing two primitives for the remapping. Compared to the state of the art, the evaluation results demonstrate that RemapCom can reduce write amplification by up to 53% and improve write throughput by up to 30%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12195135PMC
http://dx.doi.org/10.3390/mi16060699DOI Listing

Publication Analysis

Top Keywords

write amplification
12
udbs remapcom
8
write
5
udbs
5
remapcom
5
compaction-aware flash
4
memory
4
flash memory
4
remapping
4
memory remapping
4

Similar Publications

Disposble electrochemical aptasensors: From design strategies, signal amplification, to applications and future perspectives.

Talanta

September 2025

Department of Cardiology, Affiliated Huishan Hospital of Xinglin College, Nantong University, Wuxi Huishan District People's Hospital, Wuxi, 214187, China. Electronic address:

Disposable electrochemical aptasensors (DEAs) hold significant promise for different analyte detection across diverse fields, due to inherent advantages of rapid response, portability, low cost, and high sensitivity. This review systematically examines the design strategies, signal amplification methodologies, and recent advances in DEAs in the fields of environmental analysis, food safety monitoring, and medical diagnostics. Specifically, it critically evaluates construction strategies for screen-printed electrodes (SPEs) and paper-based electrodes, including substrate selection, ink formulations, and key fabrication techniques such as screen printing, inkjet printing, deposition methods, and direct-writing technologies.

View Article and Find Full Text PDF

Background: Recurrent gastric or gastroesophageal junction cancers have poor prognoses and limited treatment options. While archival tumor tissue is commonly used for genomic profiling, it may not reflect molecular changes at recurrence.

Objective: We aimed to assess the utility of a circulating tumor DNA analysis in identifying actionable genomic alterations at recurrence and compare findings with archival primary tumor profiles.

View Article and Find Full Text PDF

High-risk neuroblastoma remains a major clinical challenge, with a five-year survival rate below 50% despite intensive multimodal therapies. MYCN amplification, a hallmark of high-risk disease, drives an aggressive transcriptional program that maintains undifferentiated and proliferative states in neuroblastoma cells. Given its central role in oncogenic transcription, MYCN represents an attractive therapeutic target; however, its undruggable nature has prompted efforts to identify upstream regulators or cofactors that sustain MYCN expression and oncogenic function.

View Article and Find Full Text PDF

: Nanoparticles (NPs) were previously explored as enhancers in electroporation due to their potential to locally amplify electric fields near cell membranes, with gold nanoparticles (AuNPs) in particular showing promise in improving membrane permeability and gene electrotransfer (GET). In this study, we systematically investigated the influence of NP properties-including size, shape, surface functionalization, and material-on electroporation efficacy. : A combined approach using theoretical modeling and experimental validation was employed, encompassing numerical simulations, membrane permeabilization assays, transmission electron microscopy, and GET efficiency measurements.

View Article and Find Full Text PDF

: Miscarriage is an increasingly common event worldwide arising from various factors, and identifying its etiology is important for planning and managing any future pregnancies. It is estimated that about half of early pregnancy loss cases are caused by genetic abnormalities, while a significantly lower rate is found in late pregnancy loss. Multiplex ligation-dependent probe amplification (MLPA) can detect small changes within a gene with precise breakpoints at the level of a single exon.

View Article and Find Full Text PDF