98%
921
2 minutes
20
This study systematically investigates the electrical characteristics of the vertical NPN bipolar junction transistor (VNPN BJT) in the strong magnetic field environment, focusing on analyzing the effects of magnetic field direction and intensity on key parameters such as terminal current and current gain (). The simulation results show that the magnetic field induces changes in the carrier distribution, thereby affecting the current transport path. Through the in-depth analysis of electron motion trajectories, potential distribution, and Hall voltage, this paper reveals the physical mechanisms behind the device's characteristic changes under the magnetic field and discovers that the inherent asymmetry of the BJT structure induces significant magnetic anisotropy effects. On this basis, a design for interference-resistant structures in strong magnetic field environments is proposed, effectively suppressing the adverse effects of magnetic-field-sensitive directions on BJT performance and significantly improving the device's stability in complex magnetic field environments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12195420 | PMC |
http://dx.doi.org/10.3390/mi16060671 | DOI Listing |
J Appl Clin Med Phys
September 2025
Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia, USA.
Purpose: Real‑time magnetic resonance-guided radiation therapy (MRgRT) integrates MRI with a linear accelerator (Linac) for gating and adaptive radiotherapy, which requires robust image‑quality assurance over a large field of view (FOV). Specialized phantoms capable of accommodating this extensive FOV are therefore essential. This study compares the performance of four commercial MRI phantoms on a 0.
View Article and Find Full Text PDFCereb Cortex
August 2025
Nencki Institute of Experimental Biology, PAS, 3 Pasteur Street, 02-093 Warsaw, Poland.
In the visual cortices, receptive fields (RFs) are arranged in a gradient from small sizes in the center of the visual field to the largest sizes at the periphery. Using functional magnetic resonance imaging (fMRI) mapping of population RFs, we investigated RF adaptation in V1, V2, and V3 in patients after long-term photoreceptor degeneration affecting the central (Stargardt disease [STGD]) and peripheral (Retinitis Pigmentosa [RP]) regions of the retina. In controls, we temporarily limited the visual field to the central 10° to model peripheral loss.
View Article and Find Full Text PDFOdontology
September 2025
Department of Biology, SR.C., Islamic Azad University, Tehran, Iran.
Streptococcus mutans, a key cause of dental caries, is not treated by conventional toothpaste, brushing, flossing, or antiseptic mouthwashes. This necessitates the development of enriched toothpaste. Cyanobacteria-derived phycoerythrin (PE) has antioxidant and antibacterial properties.
View Article and Find Full Text PDFNMR Biomed
October 2025
High-Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.
The human kidneys play a pivotal role in regulating blood pressure, water, and salt homeostasis, but assessment of renal function typically requires invasive methods. Deuterium metabolic imaging (DMI) is a novel, noninvasive technique for mapping tissue-specific uptake and metabolism of deuterium-labeled tracers. This study evaluates the feasibility of renal DMI at 7-Tesla (7T) to track deuterium-labeled tracers with high spatial and temporal resolution, aiming to establish a foundation for potential clinical applications in the noninvasive investigation of renal physiology and pathophysiology.
View Article and Find Full Text PDFBioelectromagnetics
September 2025
Competence Centre of Sleep Medicine, Charité -Universitaetsmedizin Berlin, Berlin, Germany.
A new whole-body exposure facility for a randomized, double-blind, cross-over provocation study investigating possible effects of 50 Hz magnetic field exposure on sleep and markers of Alzheimer's disease has been developed and dosimetrically analyzed. The exposure facility was custom-tailored for the sleep laboratory where the study was carried out and enables magnetic flux densities of up to 30 μT with a maximum field inhomogeneity of less than ± 20%. Exposure is applied fully software-controlled and in a blinded and randomized manner.
View Article and Find Full Text PDF