Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objectives: Early skin cancer detection in primary care settings is crucial for prognosis, yet clinicians often lack relevant training. Machine learning (ML) methods may offer a potential solution for this dilemma. This study aimed to develop a neural network for the binary classification of skin lesions into malignant and benign categories using smartphone images and clinical data via a multimodal and transfer learning-based approach.

Methods: We used the PAD-UFES-20 dataset, which included 2298 sets of lesion images. Three neural network models were developed: (1) a clinical data-based network, (2) an image-based network using a pre-trained DenseNet-121 and (3) a multimodal network combining clinical and image data. Models were tuned using Bayesian Optimisation HyperBand across 5-fold cross-validation. Model performance was evaluated using AUC-ROC, average precision, Brier score, calibration curve metrics, Matthews correlation coefficient (MCC), sensitivity and specificity. Model explainability was explored using permutation importance and Grad-CAM.

Results: During cross-validation, the multimodal network achieved an AUC-ROC of 0.91 (95% confidence interval [CI] 0.88-0.93) and a Brier score of 0.15 (95% CI 0.11-0.19). During internal validation, it retained an AUC-ROC of 0.91 and a Brier score of 0.12. The multimodal network outperformed the unimodal models on threshold-independent metrics and at MCC-optimised threshold, but it had similar classification performance as the image-only model at high-sensitivity thresholds. Analysis of permutation importance showed that key clinical features influential for the clinical data-based network included bleeding, lesion elevation, patient age and recent lesion growth. Grad-CAM visualisations showed that the image-based network focused on lesioned regions during classification rather than background artefacts.

Conclusions: A transfer learning-based, multimodal neural network can accurately identify malignant skin lesions from smartphone images and clinical data. External validation with larger, more diverse datasets is needed to assess the model's generalisability and support clinical adoption.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12188081PMC
http://dx.doi.org/10.1177/11769351251349891DOI Listing

Publication Analysis

Top Keywords

neural network
16
transfer learning-based
12
smartphone images
12
multimodal network
12
brier score
12
network
11
learning-based multimodal
8
multimodal neural
8
lesions smartphone
8
skin lesions
8

Similar Publications

Brain activation for language and its relationship to cognitive and linguistic measures.

Cereb Cortex

August 2025

Faculty of Psychology and Education Science, Department of Psychology, University of Geneva, Chemin des Mines 9, Geneva, 1202, Switzerland.

Language learning and use relies on domain-specific, domain-general cognitive and sensory-motor functions. Using fMRI during story listening and behavioral tests, we investigated brain-behavior associations between linguistic and non-linguistic measures in individuals with varied multilingual experience and reading skills, including typical reading participants (TRs) and dyslexic readers (DRs). Partial Least Square Correlation revealed a main component linking cognitive, linguistic, and phonological measures to amodal/associative brain areas.

View Article and Find Full Text PDF

AI-enhanced predictive modeling for treatment duration and personalized treatment planning of cleft lip and palate therapy.

Int J Comput Assist Radiol Surg

September 2025

Division of Plastic and Reconstructive Surgery, Neonatal and Pediatric Craniofacial Airway Orthodontics, Department of Surgery, Stanford University School of Medicine, 770 Welch Road, Palo Alto, CA, 94394, USA.

Background: Alveolar molding plate treatment (AMPT) plays a critical role in preparing neonates with cleft lip and palate (CLP) for the first reconstruction surgery (cleft lip repair). However, determining the number of adjustments to AMPT in near-normalizing cleft deformity prior to surgery is a challenging task, often affecting the treatment duration. This study explores the use of machine learning in predicting treatment duration based on three-dimensional (3D) assessments of the pre-treatment maxillary cleft deformity as part of individualized treatment planning.

View Article and Find Full Text PDF

Drug-associated postpartum hemorrhage: a comprehensive disproportionality analysis based on the FAERS database.

Naunyn Schmiedebergs Arch Pharmacol

September 2025

Department of Pharmacy, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, #18 Daoshan Road, Fuzhou, Fujian, 350001, China.

Postpartum hemorrhage (PPH) is a life-threatening obstetric complication. We aimed to identify the drugs that associated with PPH based on the FDA Adverse Event Reporting System (FAERS) data, providing scientific evidence for targeted prevention of drug-related PPH risk factors. Data from 2004Q1 to 2025Q1 were extracted from FAERS, and disproportionality analysis was performed to identify potential drug signals.

View Article and Find Full Text PDF

Insights From Language-Trained Apes: Brain Network Plasticity and Communication.

Evol Anthropol

September 2025

Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, USA.

Language is central to the cognitive and sociocultural traits that distinguish humans, yet the evolutionary emergence of this capacity is far from fully understood. This review explores how the study of the brains of language-trained apes (LTAs) offers a unique and valuable opportunity to tease apart the relative contribution of evolved species differences, behavior, and environment in the emergence of complex communication abilities. For example, when raised in sociolinguistically rich and interactive environments, LTAs show communicative competencies that parallel aspects of early human language acquisition and exhibit altered neuroanatomy, including increased connectivity and laterization in regions associated with language.

View Article and Find Full Text PDF