A multiscale theory for mesenchymal cell migration in straight or curved channel confinement.

Biophys J

Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia; Center for Soft Matter and Biological Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia; Department of Mechanical Engineering, Virginia Polytechnic Institute and State U

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mesenchymal cells navigate the extracellular matrix (ECM) in vivo by processing both its mechanical properties and confinement geometry. Here, we develop a multiscale whole-cell theory to investigate cell spreading and migration in two-dimensional viscoelastic channel confinements of varying width and curvature. Our simulations show that, in straight channels, the cell migration speed depends monotonically on the substrate elastic stiffness, which is otherwise biphasic on an unconfined substrate. This is because confinement enforces directional spreading while reducing the spreading area, which results in lower intracellular viscous drag on the nucleus and a higher net traction force of polarized cells in our model. In contrast, we find that confinement curvature slows down cell migration since the friction forces between the bending cell and the confinement walls increase with curvature. We validate our model with experimental data for cell migration in straight channels spanning a wide range of the ECM stiffness as well as in curved channels. Our model illuminates the intertwined effects of substrate viscoelasticity and confinement geometry on cell spreading and migration in complex microenvironments, revealing that channel curvature can override substrate mechanics to dominate migration regulation. The study paves the way for designing scaffolds that leverage curvature and confinement to steer controllable cell migration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12414689PMC
http://dx.doi.org/10.1016/j.bpj.2025.06.020DOI Listing

Publication Analysis

Top Keywords

cell migration
20
cell
8
migration
8
migration straight
8
confinement geometry
8
cell spreading
8
spreading migration
8
straight channels
8
confinement
7
curvature
5

Similar Publications

Tumor necrosis factor-alpha (TNF-α) is a cytokine involved in the immune-inflammatory response. It can induce an odontoblastic phenotype and enhance biomineralization in dental pulp mesenchymal stem cells but does not have the same effect on osteoblasts. The reasons for this differential response, despite the shared lineage of these cell types, are not yet clear.

View Article and Find Full Text PDF

Crosstalk between leukemic cells and their surrounding mesenchymal stromal cells (MSCs) in the bone marrow microenvironment is crucial for the pathogenesis of myelodysplastic syndromes (MDS) and is mediated by extracellular vesicles (EVs). The EV-specific miRNAs derived from MDS-MSCs remain poorly explored. EVs isolated from HS-5, an immortalized stromal cell line, promoted the proliferation and 5-azacytidine (AZA) resistance of SKM-1 cells.

View Article and Find Full Text PDF

Lung cancer remains one of the leading causes of cancer-related mortality worldwide, highlighting the urgent need for more effective and targeted therapeutic strategies. Traditional Chinese Medicine (TCM), known for its favorable safety profile and broad pharmacological effects, offers promising candidates for cancer treatment. Salvianolic acid F (SAF), a key bioactive compound derived from , has demonstrated antitumor potential, but its role and underlying mechanisms in lung cancer remain inadequately characterized.

View Article and Find Full Text PDF

Defining the Role of Integrins in Melanoblast Migration .

Mol Biol Cell

September 2025

Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.

During embryonic development, neural crest-derived melanoblasts, which are precursors of pigment-producing melanocytes, disperse throughout the skin by long-range cell migration that requires adhesion to the ECM. Members of the integrin family of cell-ECM adhesion receptors are thought to contribute to melanocyte migration . However, due to the functional redundancy between different integrin heterodimers, the precise role of integrins in melanoblast migration, as well as the mechanisms that regulate them in this process, especially in contexts, remain poorly understood.

View Article and Find Full Text PDF

Roles of Extracellular Superoxide Dismutase in Regulating Cell Migration and Vesicle Trafficking in Dictyostelium and Mammalian Cells.

Dev Growth Differ

September 2025

Department of Biological Sciences, College of Arts, Sciences, and Education, Florida International University, Miami, Florida, USA.

Superoxide dismutases (SODs) are key regulators of reactive oxygen species (ROS) and redox balance. Although intracellular SODs have been extensively studied, growing attention has been directed toward understanding the roles of extracellular SODs in both Dictyostelium and mammalian systems. In Dictyostelium discoideum, SodC is a glycosylphosphatidylinositol (GPI)-anchored enzyme that modulates extracellular superoxide to regulate Ras, PI3K signaling, and cytoskeletal remodeling during directional cell migration.

View Article and Find Full Text PDF