98%
921
2 minutes
20
A homodyne detector, which is also a common element in current telecommunication, is a core component of continuous-variable quantum key distribution (CV-QKD) since it is considered the simplest setup for the distinguishing of coherent states with minimum error. However, the theoretical security of CV-QKD is based on the assumption that the responses of the homodyne detector are always linear with respect to the input, which is impossible in practice. In the real world, a homodyne detector has a finite linear domain, so the linearity assumption is broken when the input is too large. Regarding this security vulnerability, the eavesdropper Eve can perform the so-called homodyne detector-blinding attack by saturating the homodyne detector and then stealing key information without being detected by the legitimate users. In this paper, we propose a countermeasure for the homodyne detector-blinding attack by using an adjustable optical attenuator with a feedback structure. Specifically, we estimate the suitable attenuation value in the data processing of CV-QKD and feed it back to the adjustable optical attenuator before the detector in real time. Numerical simulation shows that the proposed countermeasure can effectively defend against homodyne detector-blinding attacks and ensure the security of the Gaussian-modulated coherent state protocol with finite-size effect.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191669 | PMC |
http://dx.doi.org/10.3390/e27060631 | DOI Listing |
Entropy (Basel)
June 2025
School of Automation, Central South University, Changsha 410083, China.
A homodyne detector, which is also a common element in current telecommunication, is a core component of continuous-variable quantum key distribution (CV-QKD) since it is considered the simplest setup for the distinguishing of coherent states with minimum error. However, the theoretical security of CV-QKD is based on the assumption that the responses of the homodyne detector are always linear with respect to the input, which is impossible in practice. In the real world, a homodyne detector has a finite linear domain, so the linearity assumption is broken when the input is too large.
View Article and Find Full Text PDF