Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A homodyne detector, which is also a common element in current telecommunication, is a core component of continuous-variable quantum key distribution (CV-QKD) since it is considered the simplest setup for the distinguishing of coherent states with minimum error. However, the theoretical security of CV-QKD is based on the assumption that the responses of the homodyne detector are always linear with respect to the input, which is impossible in practice. In the real world, a homodyne detector has a finite linear domain, so the linearity assumption is broken when the input is too large. Regarding this security vulnerability, the eavesdropper Eve can perform the so-called homodyne detector-blinding attack by saturating the homodyne detector and then stealing key information without being detected by the legitimate users. In this paper, we propose a countermeasure for the homodyne detector-blinding attack by using an adjustable optical attenuator with a feedback structure. Specifically, we estimate the suitable attenuation value in the data processing of CV-QKD and feed it back to the adjustable optical attenuator before the detector in real time. Numerical simulation shows that the proposed countermeasure can effectively defend against homodyne detector-blinding attacks and ensure the security of the Gaussian-modulated coherent state protocol with finite-size effect.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191669PMC
http://dx.doi.org/10.3390/e27060631DOI Listing

Publication Analysis

Top Keywords

homodyne detector-blinding
16
homodyne detector
16
detector-blinding attack
12
adjustable optical
12
optical attenuator
12
continuous-variable quantum
8
quantum key
8
key distribution
8
homodyne
7
detector
5

Similar Publications

A homodyne detector, which is also a common element in current telecommunication, is a core component of continuous-variable quantum key distribution (CV-QKD) since it is considered the simplest setup for the distinguishing of coherent states with minimum error. However, the theoretical security of CV-QKD is based on the assumption that the responses of the homodyne detector are always linear with respect to the input, which is impossible in practice. In the real world, a homodyne detector has a finite linear domain, so the linearity assumption is broken when the input is too large.

View Article and Find Full Text PDF