Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Rationale And Objective: This study compared the capabilities of two-dimensional (2D) and three-dimensional (3D) deep learning (DL), radiomics, and fusion models to predict postpartum hemorrhage (PPH), using sagittal T2-weighted MRI images.

Materials And Methods: This retrospective study successively included 581 pregnant women suspected of placenta accreta spectrum (PAS) disorders who underwent placental MRI assessment between May 2018 and June 2024 in two hospitals. Clinical information was collected, and MRI images were analyzed by two experienced radiologists. The study cohort was divided into training (hospital 1, n=470) and validation (hospital 2, n=160) sets. Radiomics features were extracted after image segmentation to develop the radiomics model, 2D and 3D DL models were developed, and two fusion strategies (early and late fusion) were used to construct the fusion models. ROC curves, AUC, sensitivity, specificity, calibration curves, and decision curve analysis were used to evaluate the models' performance.

Results: The late-fusion model (DLRad_LF) yielded the highest performance, with AUCs of 0.955 (95% CI: 0.935-0.974) and 0.898 (95% CI: 0.848-0.949) in the training and validation sets, respectively. In the validation set, the AUC of the 3D DL model was significantly larger than those of the radiomics (AUC=0.676, P<0.001) and 2D DL (AUC=0.752, P<0.001) models. Subgroup analysis found that placenta previa and PAS did not impact the models' performance significantly.

Conclusion: The DLRad_LF model could predict PPH reasonably accurately based on sagittal T2-weighted MRI images.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.acra.2025.05.068DOI Listing

Publication Analysis

Top Keywords

fusion models
12
postpartum hemorrhage
8
radiomics
5
fusion
5
multicentre comparative
4
comparative analysis
4
analysis radiomics
4
radiomics deep-learning
4
deep-learning fusion
4
models
4

Similar Publications

Respiratory syncytial virus (RSV) is a major pathogen causing acute respiratory infections, and the RSV fusion glycoprotein (F) has been identified as a key target for developing small-molecule inhibitors. Based on our prior identification of lonafarnib as an F protein inhibitor, medicinal chemistry efforts led to the development of , which exhibits significantly enhanced potency against both laboratory and clinical RSV isolates in cellular assays. Time-of-addition and SPR assays indicate that inhibits viral entry by targeting the RSV F protein, but has farnesyltransferase-independent antiviral efficacy.

View Article and Find Full Text PDF

Acute Myeloid Leukemia (AML) is a heterogeneous hematological malignancy with an altered bone marrow microenvironment sheltering leukemic stem cells (LSCs). LSCs are characterized as self-renewing and highly proliferative cancer stem cells and accumulate abnormal genetic and epigenetic factors contributing to their uncontrolled proliferation. Chromosomal translocation t(9;11)(p22;q23) forms fusion oncoprotein, MLL-AF9, and regulates the transcription factor, C-Myb, which is highly expressed in AML.

View Article and Find Full Text PDF

The prompt and accurate identification of pathogenic bacteria is crucial for mitigating the transmission of infections. Conventional detection methods face limitations, including lengthy processing, complex sample pretreatment, high instrumentation costs, and insufficient sensitivity for rapid on-site screening. To address these challenges, an aptamer (Apt)-sensor based on functionalized magnetic nanoparticles (MNPs) was developed for detecting Escherichia coli.

View Article and Find Full Text PDF

Insufficient telomeric DNA damage response promotes chromosomal instability in aged oocytes.

Sci Bull (Beijing)

August 2025

MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen Univ

Increased chromosomal instability impairs oocyte quality, contributing to female reproductive aging. The telomeric DNA damage response (DDR) is essential for genomic stability; however, how oocytes respond to telomeric damage remains elusive. Here, we observed that aged human germinal vesicle (GV) oocytes accumulated telomeric DNA damage.

View Article and Find Full Text PDF

Leber's hereditary optic neuropathy (LHON), a mitochondrial disorder marked by central vision loss, exhibits incomplete penetrance and male predominance. Since there are no adequate models for understanding the rapid vision loss associated with LHON, we generated induced pluripotent stem cells (iPSCs) from LHON patients carrying the pathogenic m.3635G > A mutation and differentiated them into retinal pigment epithelium (RPE) cells.

View Article and Find Full Text PDF