In situ construction of ossification micro-units for critical bone regeneration via sustained lifting of epigenetic suppression.

J Control Release

Department of Radiology, Ruijin Hospital Lu Wan Branch, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China; Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruij

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Critical-sized bone defects present significant clinical challenges due to insufficient stem cell recruitment, epigenetic suppression of osteogenesis, and inadequate mineralization. Among the epigenetic suppression mechanisms, upregulated MEG3 specifically recruits the epigenetic regulator EZH2 to block the transcription of β-catenin, a core gene for bone regeneration. To regulate MEG3 in vivo effectively, we used microfluidics to develop in situ continuous MEG3-silencing ossification micro-units (MSOMs) that integrate "material-gene-biofactor" tri-coupling into a unified biomaterial system. The MSOMs are nano-micro particles composed of amorphous calcium phosphate nanoparticles loaded with siRNA (si@BCP) in GelMA microgels loaded with stromal cell-derived factor-1α (SDF-1α). The SDF-1α in the microgel layer is rapidly released to recruit BMSCs, while the siRNA in si@BCP has sustained release to silence MEG3 and restore β-catenin transcription continuously. Thus, the MSOMs provide a stable mineralization microenvironment for ossification center formation. In vivo observations revealed the formation of ossification centers around these micro-units, tripling new bone formation and achieving efficient bone regeneration. By addressing the key limitations of traditional therapies, MSOMs offer a clinically viable solution that integrates stem cell recruitment, epigenetic regulation, and biomaterial-based mineralization, thus providing a highly efficient approach for critical bone defect repair.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2025.113978DOI Listing

Publication Analysis

Top Keywords

bone regeneration
12
epigenetic suppression
12
ossification micro-units
8
critical bone
8
stem cell
8
cell recruitment
8
recruitment epigenetic
8
sirna si@bcp
8
bone
6
epigenetic
5

Similar Publications

Aim: To investigate the functional significance of mitophagy in age-related osteogenic decline and the underlying mechanisms using in vivo and in vitro models.

Materials And Methods: An alveolar bone defect model in aged mice and a serial passaging-induced ageing model of human periodontal ligament stem cells (PDLSCs) were established. Osteogenic potential in mice was assessed by micro-CT, immunofluorescence, immunohistochemical analyses and histological staining.

View Article and Find Full Text PDF

Aim: Prickle planar cell polarity (PCP) protein 2 (Prickle2) encodes a homologue of Drosophila prickle and is involved in the non-canonical Wnt/PCP signalling pathway. However, its exact role in dentinogenesis remains unclear. Dentinogenesis, a key process in tooth morphogenesis, involves the patterned arrangement of odontoblasts and the formation of dentine matrix along the pulp cavity.

View Article and Find Full Text PDF

Objectives: Demineralised dentin matrix (DDM) is an effective scaffold material for bone tissue engineering. However, the osteoimmunological mechanism of DDM remains unexplored. Th17/Treg cell balance has been noticed as a crucial factor in bone regeneration.

View Article and Find Full Text PDF

Senescence-regulating agents remodel mesenchymal stem cell-schwann cell circuitry for diabetic bone regeneration.

Biomaterials

August 2025

Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laborator

Bone healing requires Schwann cells (SCs) paracrine factors for mesenchymal stem cell function. Diabetes mellitus (DM) patients are susceptible to developing SCs dysfunction and impairing bone healing. Rare research considered reconstructing mesenchymal stem cell-schwann cell circuitry in diabetic bone regeneration.

View Article and Find Full Text PDF

In situ articular cartilage (AC) regeneration is a meticulously coordinated process. Microfracture has been the most extensive clinical approach in AC repair, but it faces challenges such as matrix degradation, generation, and remodeling within a local inflammatory microenvironment. So far, it remains a challenge to establish a multistage regulatory framework for coordinating these cellular events, particularly the immune response and chondrocyte proliferation in microfracture-mediated AC repair microenvironments, which is crucial for promoting AC regeneration quality.

View Article and Find Full Text PDF