Publications by authors named "Pengzhen Zhuang"

Critical-sized bone defects present significant clinical challenges due to insufficient stem cell recruitment, epigenetic suppression of osteogenesis, and inadequate mineralization. Among the epigenetic suppression mechanisms, upregulated MEG3 specifically recruits the epigenetic regulator EZH2 to block the transcription of β-catenin, a core gene for bone regeneration. To regulate MEG3 in vivo effectively, we used microfluidics to develop in situ continuous MEG3-silencing ossification micro-units (MSOMs) that integrate "material-gene-biofactor" tri-coupling into a unified biomaterial system.

View Article and Find Full Text PDF

The alterations in glucose metabolism flux induced by mitochondrial function changes are crucial for regulating bone immune homeostasis. The restoration of mitochondrial homeostasis, serving as a pivotal rheostat for balancing glucose metabolism in immune cells, can effectively mitigate inflammation and initiate osteogenesis. Herein, an ion-activated mitochondrial rheostat fiber-microsphere polymerization system (FM@CeZnHA) was innovatively constructed.

View Article and Find Full Text PDF

Destruction of cartilage due to the abnormal remodeling of subchondral bone (SB) leads to osteoarthritis (OA), and restoring chondro-bone metabolic homeostasis is the key to the treatment of OA. However, traditional intra-articular injections for the treatment of OA cannot directly break through the cartilage barrier to reach SB. In this study, the hydrothermal method is used to synthesize ultra-small size (≈5 nm) selenium-doped carbon quantum dots (Se-CQDs, SC), which conjugated with triphenylphosphine (TPP) to create TPP-Se-CQDs (SCT).

View Article and Find Full Text PDF

Current artificial designs of the periosteum focus on osteogenic or angiogenic properties, while ignoring the filling and integration with bone microcracks, which trigger a prolonged excessive inflammatory reaction and lead to failure of bone regeneration. In this study, seamless adhesive biomimetic periosteum patches (HABP/Sr-PLA) were prepared to fill microcracks in defective bone via interfacial self-assembly induced by Sr ions mediated metal-ligand interactions among pamidronate disodium-modified hyaluronic acid (HAPD), black phosphorus (BP), and hydrophilic polylactic acid (PLA). In vitro, HABP/Sr-PLA exhibited excellent self-healing properties, seamlessly filled bone microcracks, and significantly enhanced osteogenesis and angiogenesis.

View Article and Find Full Text PDF

Clinical treatment of osteosarcoma encounters great challenges of postsurgical tumor recurrence and extensive bone defect. To develop an advanced artificial bone substitute that can achieve synergistic bone regeneration and tumor therapy for osteosarcoma treatment, a multifunctional calcium phosphate composite enabled by incorporation of bioactive FePSe -nanosheets within the cryogenic-3D-printed α-tricalcium phosphate scaffold (TCP-FePSe ) is explored. The TCP-FePSe scaffold exhibits remarkable tumor ablation ability due to the excellent NIR-II (1064 nm) photothermal property of FePSe -nanosheets.

View Article and Find Full Text PDF
Article Synopsis
  • Osteoporosis is a bone disease caused by an imbalance between bone formation and breakdown, making treatment of defects challenging due to factors like impaired bone growth and increased bone loss.
  • A new drug delivery system using gelatin-coated hollow mesoporous silica nanoparticles (HMSNs/GM) loaded with pro-osteogenic and anti-osteoclastic drugs is combined with calcium magnesium phosphate cement (MCPC) to enhance bone regeneration.
  • The MCPC/HMSNs@ALN-PTH/GM system shows a combined effect on promoting bone formation, reducing bone loss, and improving blood vessel growth, indicating its potential for better treatment options for osteoporosis.
View Article and Find Full Text PDF

Building an angiogenesis microenvironment and inhibiting wound infection are of great significance for chronic wound repair. In this paper, polydopamine-encapsulated mesoporous bioglass (MBG@PDA) capsules were constructed to realize the integration of angiogenesis and infection inhibition through the formation of a composite hydrogel with modified hyaluronic acid (HAMA) to promote wound healing. The experiments showed that the composite hydrogel had good adhesion and toughness and promoted the migration of fibroblasts to accelerate the epithelialization process.

View Article and Find Full Text PDF

Chronic wounds are characterized by long-term inflammation and persistent infection, which make them difficult to heal. Therefore, an urgent desire is to develop a multifunctional wound dressing that can prevent wound infection and promote wound healing by creating a favorable microenvironment. In this study, a curcumin-based metal-organic framework (QCSMOF-Van), loaded with vancomycin and coated with quaternary ammonium salt chitosan (QCS), was prepared.

View Article and Find Full Text PDF

Introduction: Gene therapy is becoming increasingly common in clinical practice, giving hope for the correction of a wide range of human diseases and defects. The CRISPR/Cas9 system, consisting of the Cas9 nuclease and single-guide RNA (sgRNA), has revolutionized the field of gene editing. However, efficiently delivering the CRISPR-Cas9 to the target organ or cell remains a significant challenge.

View Article and Find Full Text PDF