Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The peripheral immune system is essential for maintaining central nervous system homeostasis. This study investigates the effects of peripheral immune markers on accelerated brain aging and dementia using brain-predicted age difference based on neuroimaging.

Methods: By leveraging data from the UK Biobank, Cox regression was used to explore the relationship between peripheral immune markers and dementia, and multivariate linear regression to assess associations between peripheral immune biomarkers and brain structure. Additionally, we established a brain age prediction model using Simple Fully Convolutional Network (SFCN) deep learning architecture. Analysis of the resulting brain-Predicted Age Difference (PAD) revealed relationships between accelerated brain aging, peripheral immune markers, and dementia.

Results: During the median follow-up period of 14.3 years, 4, 277 dementia cases were observed among 322, 761 participants. Both innate and adaptive immune markers correlated with dementia risk. NLR showed the strongest association with dementia risk (HR = 1.14; 95% CI: 1.11-1.18, P<0.001). Multivariate linear regression revealed significant associations between peripheral immune markers and brain regional structural indices. Utilizing the deep learning-based SFCN model, the estimated brain age of dementia subjects (MAE = 5.63, r2 = - 0.46, R = 0.22) was determined. PAD showed significant correlation with dementia risk and certain peripheral immune markers, particularly in individuals with positive brain age increment.

Conclusion: This study employs brain age as a quantitative marker of accelerated brain aging to investigate its potential associations with peripheral immunity and dementia, highlighting the importance of early intervention targeting peripheral immune markers to delay brain aging and prevent dementia.

Download full-text PDF

Source
http://dx.doi.org/10.1097/JS9.0000000000002746DOI Listing

Publication Analysis

Top Keywords

peripheral immune
24
immune markers
20
dementia risk
12
brain age
8
deep learning
8
accelerated brain
8
brain aging
8
brain-predicted age
8
age difference
8
immune
7

Similar Publications

Mechanisms and treatment of cancer therapy-induced peripheral and central neurotoxicity.

Nat Rev Cancer

September 2025

Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.

Neurotoxicity is a common and potentially severe adverse effect from conventional and novel cancer therapy. The mechanisms that underlie clinical symptoms of central and peripheral nervous system injury remain incompletely understood. For conventional cytotoxic chemotherapy or radiotherapy, direct toxicities to brain structures and neurovascular damage may result in myelin degradation and impaired neurogenesis, which eventually translates into delayed neurodegeneration accompanied by cognitive symptoms.

View Article and Find Full Text PDF

Cell death in multiple sclerosis.

Cell Death Differ

September 2025

Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.

Multiple sclerosis (MS) is a chronic autoimmune disorder of the central nervous system (CNS) characterized by inflammatory demyelination and progressive neurodegeneration. Although current disease-modifying therapies modulate peripheral autoimmune responses, they are insufficient to fully prevent tissue specific neuroinflammation and long-term neuronal and oligodendrocyte loss. Growing evidence implicates various regulated cell death (RCD) pathways, including apoptosis, necroptosis, pyroptosis, and ferroptosis, not only as downstream consequences of chronic inflammation, but also as active drivers of demyelination, axonal injury, and glial dysfunction in MS.

View Article and Find Full Text PDF

Mumps virus infection triggers early pro-inflammatory responses and impairs Leydig and Sertoli cell function in an ex vivo human testis model.

Hum Reprod

September 2025

Institut National de la Santé et de la Recherche Médicale, Ecole des Hautes Etudes en Santé Publique, Institut de recherche en santé, environnement et travail, Université de Rennes-UMR_S1085, Rennes, France.

Study Question: What is the direct effect of mumps virus (MuV) replication within the human testis on the tissue innate immune responses and testicular cell functions?

Summary Answer: MuV induces an early pro-inflammatory response in the human testis ex vivo and infects both Leydig cells and Sertoli cells, which drastically alters testosterone and inhibin B production.

What Is Known Already: Despite widespread vaccination efforts, orchitis remains a significant complication of MuV infection, especially in young men, which potentially results in infertility in up to 87% of patients with bilateral orchitis. Our understanding of MuV pathogenesis in the human testis has been limited by the lack of relevant animal models, impairing the development of effective treatments.

View Article and Find Full Text PDF

Accelerated T-cell senescence and persistent inflammation in older adults with rheumatoid arthritis.

Int Immunopharmacol

September 2025

Laboratory of Immunobiology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Graduate Programe in Biomedical Gerontology, School of Medicine, PUCRS, Porto Alegre, Brazil; National Institute of Science and Technology - Neuroimmuno

Rheumatoid arthritis (RA) is a chronic inflammatory condition primarily affecting the peripheral joints while also causing extra-articular complications. Adults with RA show premature aging of the immune system (immunosenescence). Here, we investigated whether senescence T-cell markers and inflammaging remain elevated in older adults with RA.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) frequently invades the portal vein, leading to early recurrence and a poor prognosis. However, the mechanisms underlying this invasion remain unclear. In this study, we aimed to detect portal vein circulating tumor cells (CTCs) using a Glypican-3-positive detection method and evaluate their prognostic significance.

View Article and Find Full Text PDF