98%
921
2 minutes
20
Cell-type-specific alternative splicing (AS) enables differential gene isoform expression between diverse neuron types with distinct identities and functions. Current studies linking individual RNA-binding proteins (RBPs) to AS in a limited number of neuron types underscore the need for holistic modeling. Here, we use network reverse engineering to derive a map of the neuron-type-specific AS-regulatory landscape of 133 mouse neocortical cell types using pseudobulk transcriptomes derived from single-cell data. We infer the regulons of 350 RBPs and their cell-type-specific activities, among which we validate Elavl2 as a key RBP for medial ganglionic eminence (MGE)-specific splicing in GABAergic interneurons using an in vitro embryonic stem cell (ESC) differentiation system. We also identify a module of exons and candidate regulators specific to long- and short-projection neurons across multiple neuronal classes. This study provides a resource for elucidating splicing-regulatory programs that drive neuronal molecular diversity, including those that do not align with gene-expression-based classifications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12358039 | PMC |
http://dx.doi.org/10.1016/j.celrep.2025.115898 | DOI Listing |
ACS Sens
September 2025
College of Chemistry, Beijing Normal University, Beijing 100875, China.
Dopamine (DA) signaling is essential for neurodevelopment and is particularly sensitive to disruption during adolescence. Protein restriction (PR) can impair DA dynamics, yet mechanistic insights remain limited due to challenges in real-time neurochemical sensing. Here, we present aptCFE, a robust implantable aptamer-based sensor fabricated via a reagent-free, 3 min electrochemical conjugation (E-conjugation) using amine-quinone chemistry.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
Soy protein remains a key component of plant-based food development, but its application is challenged by inherent allergenicity. Previous work identified that native amyloid-like protein aggregates in soy 7S globulin that resist gastrointestinal digestion and exhibit pronounced antigenicity. Herein, we demonstrate that protein deamidation significantly enhances proteolysis under an infant gastrointestinal digestion model, leading to ∼80 and 50% reductions in IgG- and IgE-binding capacities, respectively.
View Article and Find Full Text PDFNanoscale
September 2025
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China.
Proton exchange membrane water electrolysis (PEMWE) is regarded as the most promising technique for the sustainable production of green hydrogen due to its multiple advantages such as high working current density and high hydrogen purity. However, the anodic oxygen evolution reaction (OER) has a significant impact on the overall efficiency of the electrolytic water reaction due to its sluggish kinetics, which has prompted the search for catalysts possessing both high activity and durability. Iridium oxide exhibits excellent stability under acidic conditions but has poor catalytic activity, leading to its inability to meet the strict requirements of large-scale industrial applications.
View Article and Find Full Text PDFSmall
September 2025
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
Modifying cells to achieve desired functions has attracted extensive attention in bioengineering and bio-manufacturing. Approaches based on cell-surface engineering have the potential to endow cells with multiple functions and also create a protective shell around them. However, such shells are generally irreversible and lack functionality, leading to various drawbacks associated with irreversible dynamics.
View Article and Find Full Text PDFSmall
September 2025
National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P. R. China.
Artificial porous polymer coatings are promising for alleviating the side reactions and dendrite growth on Zn anodes. Nevertheless, the low ion transport ability constrains their application under harsh conditions such as thin Zn foil, high current density, and high depth of discharge (DOD). Herein, a 2D active filler is introduced to optimize the Zn migration in porous polymer coating.
View Article and Find Full Text PDF