A theoretical investigation of thermally activated delayed fluorescent palladium(II) complexes for organic light emitting diodes.

Phys Chem Chem Phys

State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University,

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

It is of great importance and worth making efforts to shed light on the structure-property relationship and microscopic mechanism of thermally activated delayed fluorescence (TADF) emitters with high quantum yield by high-precision theoretical investigation. Here, we perform a detailed computational investigation to briefly elaborate the structure-TADF performance relationship and luminescence mechanism of the high efficiency of recently designed TADF emitter palladium(II) complexes named Pd1 and Pd2. The Pd(II) complexes show a high decay rate of S → S, effective reverse intersystem crossing (RISC), and good relative stability of the T state, which could be responsible for their excellent TADF performance in experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d5cp00732aDOI Listing

Publication Analysis

Top Keywords

theoretical investigation
8
thermally activated
8
activated delayed
8
palladiumii complexes
8
investigation thermally
4
delayed fluorescent
4
fluorescent palladiumii
4
complexes organic
4
organic light
4
light emitting
4

Similar Publications

A novel aggregation-induced emission (AIE) system with superior performance was successfully developed through local chemical modification from thiophene to thiophene sulfone. This approach, leveraging easily accessible tetraphenylthiophene precursors, dramatically enhances the photophysical properties in a simple oxidation step. Notably, the representative 2,3,4,5-tetraphenylthiophene sulfone (3c) demonstrates remarkable solid-state emission characteristics with a fluorescence quantum yield of 72% and an AIE factor of 240, substantially outperforming its thiophene analog.

View Article and Find Full Text PDF

Recent advances in the design of small molecules targeting human ClpP.

Future Med Chem

September 2025

Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.

Human mitochondrial ClpP (hClpP), a pivotal protease regulating mitochondrial protein homeostasis, has emerged as an important target for anticancer drug development. In recent years, significant progress has been made in designing small molecules targeting hClpP, primarily classified into activators and inhibitors. Activators specifically stimulate ClpP proteolytic activity by mimicking the mechanism of its chaperone protein ClpX, with representative compounds, such as imipridone derivatives (ONC201/206/212) and their optimized products (ZK53, 7k, etc.

View Article and Find Full Text PDF

Objectives: To explore the key role of myeloid-derived suppressive cells (MDSCs) in pre-metastatic niche (PMN) and analyze their interrelationships with the main components in the microenvironment using a mathematical model.

Methods: Mathematical descriptions were used to systematically analyze the functions of MDSCs in tumor metastasis and elucidate their association with the major components (vascular endothelial cells, mesenchymal stromal cells, and cancer-associated macrophages) contributing to the formation of the pre-metastatic microenvironment. Based on the formation principle of the pre-metastatic microenvironment of tumors, the key biological processes were assumed to construct a coupled partial differential diffusion equation model.

View Article and Find Full Text PDF

Disordered rock-salt LiVO (DRX-LVO) anode exhibits distinctive 3D Li percolation transport networks, which offers the unique advantage for ultra-charging. However, the existing chemical lithiation preparation routes not only pose safety risks due to the use of highly reactive reagents but also inevitably result in products with poor crystallinity. Investigating the origin, impact, and strategies for crystallinity degradation is pivotal for advancing the industrialization of chemical lithiation.

View Article and Find Full Text PDF

Formation of chloroacetamides and chloroacetonitriles from chloroacetaldehydes and monochloramine reactions in drinking water.

J Hazard Mater

September 2025

School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou 215123, China. Electronic address:

The aldehyde addition reaction is recognized as a key pathway in the formation of haloacetamides (HAMs) in drinking water. In particular, the reaction between monochloramine and chloroaldehydes has been reported to proceed rapidly. However, the measured concentrations of haloaldehydes (HALs) in chloraminated water are often much higher than those of HAMs.

View Article and Find Full Text PDF