Advances of Nanozyme-Driven Multimodal Sensing Strategies in Point-of-Care Testing.

Biosensors (Basel)

Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou 451163, China.

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Point-of-care testing (POCT) has garnered widespread attention due to its rapid, convenient, and efficient detection capabilities, particularly playing an increasingly pivotal role in medical diagnostics and significantly improving the efficiency and quality of healthcare services. Nanozymes, as novel enzyme-mimicking materials, have emerged as a research hotspot owing to their superior catalytic performance, low cost, and robust stability. This review provides a systematic overview of the fundamental characteristics and classifications of nanozymes, along with various sensing strategies employed in POCT applications, colorimetric, electrochemical, fluorescent, chemiluminescent, and surface-enhanced Raman scattering (SERS)-based approaches. Furthermore, this review highlights innovative designs that enhance the sensitivity and accuracy of POCT across multiple domains, such as biomarker detection, environmental monitoring, and food safety analysis, thereby offering novel perspectives for the practical implementation of nanozymes in point-of-care diagnostics. Finally, this review analyzes current challenges in nanozyme-based POCT systems, including limitations in optimizing catalytic activity, ensuring nanozyme homogeneity, and achieving large-scale production, while proposing future development trajectories.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190383PMC
http://dx.doi.org/10.3390/bios15060375DOI Listing

Publication Analysis

Top Keywords

sensing strategies
8
point-of-care testing
8
advances nanozyme-driven
4
nanozyme-driven multimodal
4
multimodal sensing
4
strategies point-of-care
4
testing point-of-care
4
poct
4
testing poct
4
poct garnered
4

Similar Publications

An aptasensor-based fluorescent signal amplification strategy for highly sensitive detection of mycotoxins.

Anal Methods

September 2025

Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.

Aflatoxin B1 (AFB1) is one of the most toxic mycotoxins that pose great health threats to humans. Herein, an aptasensor-based fluorescent signal amplification strategy is developed for the detection of AFB1. Initially, the AFB1 aptamers labelled with carboxyfluorescein (FAM) are adsorbed onto graphene oxide (GO), triggering energy transfer.

View Article and Find Full Text PDF

Introduction: Organizational resilience is of paramount importance for coping with adversity, particularly in the healthcare sector during crises. The objective of the present study was to evaluate the impact of resilience-based interventions on the well-being of healthcare employees during the pandemic. In this study, resilience-based interventions are defined as organizational actions that strengthen a healthcare institution's capacity to cope with crises-such as ensuring adequate personal protective equipment and staff testing, clear risk-communication, alternative care pathways (e.

View Article and Find Full Text PDF

Combating the post-antibiotic era crisis: antimicrobial peptide/peptidomimetic-integrated combination therapies and delivery systems.

J Mater Chem B

September 2025

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China.

Globally, new antibiotic development lags behind the rapid evolution of antibiotic-resistant bacteria. Given the extensive research and development cycles, high costs, and risks associated with new pharmaceuticals, exploring alternatives to conventional antibiotics and enhancing their efficacy and safety is a promising strategy for addressing challenges in the post-antibiotic era. Previous studies have shown that antimicrobial peptides/peptidomimetics (AMPs) primarily use a membrane-disruption mechanism distinct from conventional antibiotics to exert bactericidal effects.

View Article and Find Full Text PDF

The immune system uses a variety of DNA sensors, including endo-lysosomal Toll-like receptors 9 (TLR9) and cytosolic DNA sensor cyclic GMP-AMP (cGAMP) synthase (cGAS). These sensors activate immune responses by inducing the production of a variety of cytokines, including type I interferons (IFN). Activation of cGAS requires DNA-cGAS interaction.

View Article and Find Full Text PDF

Piezo1 promotes M1 macrophage polarization and impairs osteogenic differentiation in bone infection.

Biochim Biophys Acta Mol Basis Dis

September 2025

Department of Orthopaedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, No.466 Xingang Road, Haizhu District, Guangzhou, 510317, PR China; Southern Medical University, No. 1023-1063, Satai South Road, Baiyun District, Guangzhou, 510515, PR China. Electronic addre

Background: Bone infection induces a strong inflammatory response and leads to impaired bone regeneration, in which macrophages sense mechanistic signals and modulate immune responses in the inflammatory microenvironment through Piezo1. Nonetheless, the regulatory role of Piezo1 in macrophages during bone infection remains elusive.

Methods: Rat models of infected bone defects were established for bulk RNA sequencing and single-cell RNA sequencing.

View Article and Find Full Text PDF