Fully Realizing the Bipolar Energy Storage Capability of Radical Polymer-Grafted Graphene Sheets for Zinc-Organic Battery Cathodes.

ChemSusChem

State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Radical polymers, containing stable nitroxyl radical, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), within their repeating units, are considered as bipolar cathode materials capable of undergoing both oxidation and reduction in the redox process. However, in most cases, TEMPOcontaining radical polymers are exclusively employed as p-type cathode materials, initially oxidized to a positively charged state, with only one electron being stored or released in the redox process of TEMPO units. Here, a kind of composite material, poly(2,2,6,6-tetramethylpiperidin-1-oxyl-4-yl methacrylate) (PTMA) grafted to reduced graphene oxide, rGO-g-PTMA, is applied as cathode material for zinc-organic battery. Its high specific capacity (>220 mAh g) and two well-resolved voltage plateaus confirmed the participation of TEMPO reduction in energy storage, as well as the bipolar energy storage capability of PTMA. Its electrochemical reaction mechanism and energy storage performance are also investigated in detail. This first full and distinct utilization of its p- and n-type redox reaction of PTMA opens a new avenue for nitroxyl radicals as high-performance cathode materials for zinc-organic batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.202500733DOI Listing

Publication Analysis

Top Keywords

energy storage
16
cathode materials
12
bipolar energy
8
storage capability
8
zinc-organic battery
8
radical polymers
8
redox process
8
fully realizing
4
realizing bipolar
4
energy
4

Similar Publications

Formation of surfaces oxide vacancies in porous ZnCoO nanoflowers for enhanced energy storage performance.

Discov Nano

September 2025

Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Integrated Circuit, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, China.

A cost-effective and large-scale method for synthesizing ZnCoO nanoflowers with surface oxygen vacancies as electrode materials for supercapacitors is presented. The existence of oxygen vacancies on the surface of the ZnCoO nanoflowers has been confirmed through X-ray photoelectron spectroscopy (XPS). The energy bands and density of states (DOS) of ZnCoO are examined using density functional theory, revealing that treatment with NaBH reduces the band gap of ZnCoO while increasing the DOS near the Fermi level compared to pristine ZnCoO.

View Article and Find Full Text PDF

In this study, we investigated the influence of ultrasonic frequency during ultrasound-assisted chemical bath deposition (UCBD) on the surface morphology and electrochemical performance of CoO:MnO@CoMnO composite flexible electrodes for supercapacitor applications. By systematically varying the ultrasonic frequency (1.0-2.

View Article and Find Full Text PDF

Differentiating the 2D Passivation from Amorphous Passivation in Perovskite Solar Cells.

Nanomicro Lett

September 2025

College of New Materials and New Energies, Shenzhen Technology University, Lantian Road 3002, Pingshan, 518118, Shenzhen, People's Republic of China.

The introduction of two-dimensional (2D) perovskite layers on top of three-dimensional (3D) perovskite films enhances the performance and stability of perovskite solar cells (PSCs). However, the electronic effect of the spacer cation and the quality of the 2D capping layer are critical factors in achieving the required results. In this study, we compared two fluorinated salts: 4-(trifluoromethyl) benzamidine hydrochloride (4TF-BA·HCl) and 4-fluorobenzamidine hydrochloride (4F-BA·HCl) to engineer the 3D/2D perovskite films.

View Article and Find Full Text PDF

Sugarcane () was employed as a sustainable carbon source to synthesize three-dimensional (3D) spherical manganese carbonate (MnCO) microspheres, offering a green route to advanced electrode material for high-energy-density symmetric supercapacitors. Although numerous synthesis strategies and material modifications have been explored, a detailed evaluation of environmentally friendly synthesis pathways remains essential. In this study, MnCO microspheres were successfully synthesized via a sugar-derived green synthesis followed by hydrothermal treatment.

View Article and Find Full Text PDF

Aqueous zinc-ion batteries (AZIBs) represent an environmentally benign energy storage alternative. However, the VO cathode suffers from limited cycling stability and rate capability due to structural instability, vanadium dissolution, and high desolvation energy caused by the large size of [Zn(HO)] deintercalation. Address these issues, we introduce a VO/VOPO (VOP) heterostructure that that reinforces the crystal structure to suppress vanadium dissolution and establishes a hydrophilic interface reducing the desolvation energy of Zn.

View Article and Find Full Text PDF