Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Equine infectious anemia virus (EIAV) poses a significant global threat to the equine industry, resulting in considerable economic losses and compromised horse health. Given the limited treatment options available, early detection and prevention strategies are essential to combat this viral infection. In this study, we introduce a novel colloidal gold immunochromatographic (ICLF) strip for the rapid and accurate detection of EIAV antibodies. The strip incorporates a unique fusion protein, p26-gp90, designed to enhance both the specificity and sensitivity of the detection method for EIAV antibodies. Through rigorous method validation, our strip has exhibited superior performance compared to existing detection methods. It demonstrates high sensitivity, improved specificity, and excellent stability, enabling reliable and long-term storage. Additionally, the strip allows for fast and precise analysis of clinical samples, making it an invaluable tool for the early detection and prevention of EIAV. The availability of such an accurate and efficient detection method will greatly enhance our ability to combat EIAV by enabling the early identification of infected horses and facilitating effective preventive measures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12186446PMC
http://dx.doi.org/10.1186/s12985-025-02815-6DOI Listing

Publication Analysis

Top Keywords

colloidal gold
8
gold immunochromatographic
8
equine infectious
8
infectious anemia
8
anemia virus
8
early detection
8
detection prevention
8
eiav antibodies
8
detection method
8
detection
6

Similar Publications

Amyloidosis encompasses a spectrum of rare disorders characterized by extracellular amyloid deposition. Achieving an accurate early diagnosis of systemic amyloidosis necessitates biopsy-specific pathological evaluation. Formalin-fixed, paraffin-embedded liver biopsy specimens were examined using Congo red staining, electron microscopy, immunohistochemistry (IHC), immunofluorescence, and Congo red-assisted laser microdissection with mass spectrometry (LMD/MS).

View Article and Find Full Text PDF

Background And Aim: Bovine babesiosis, caused by , poses significant economic challenges to Kazakhstan's cattle industry. Early and accurate detection is crucial for interrupting transmission cycles, particularly in regions lacking advanced diagnostic infrastructure. This study aimed to develop a rapid lateral flow immunoassay (LFIA) using a recombinant C-terminal fragment of the recombinant rhoptry-associated protein 1 (rRap1) antigen for the serodiagnosis of bovine babesiosis.

View Article and Find Full Text PDF

Colloidal gold technology in viral diagnostics: Recent innovations, clinical applications, and future perspectives.

Virology

September 2025

Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China. Electronic address:

Colloidal gold technology has revolutionized viral diagnostics through its rapid, cost-effective, and user-friendly applications, particularly in point-of-care testing (POCT). This review synthesizes recent advancements, focusing on its role in detecting respiratory viruses, hepatitis viruses, and emerging pathogens. The technology leverages the unique optical and physicochemical properties of gold nanoparticles (AuNPs), including localized surface plasmon resonance (LSPR) and high surface-to-volume ratios, to achieve rapid antigen-antibody recognition with visual readouts within 15 min.

View Article and Find Full Text PDF

Immunoelectron microscopy: a comprehensive guide from sample preparation to high-resolution imaging.

Discov Nano

September 2025

Department of Rehabilitation Medicine, Rehabilitation Medical Center, Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.

Immunoelectron Microscopy (IEM) is a technique that combines specific immunolabeling with high-resolution electron microscopic imaging to achieve precise spatial localization of biomolecules at the subcellular scale (< 10 nm) by using high-electron-density markers such as colloidal gold and quantum dots. As a core tool for analyzing the distribution of proteins, organelle interactions, and localization of disease pathology markers, it has irreplaceable value, especially in synapse research, pathogen-host interaction mechanism, and tumor microenvironment analysis. According to the differences in labeling sequence and sample processing, the IEM technology system can be divided into two categories: the first is pre-embedding labeling, which optimizes the labeling efficiency through the pre-exposure of antigenic epitopes and is especially suitable for the detection of low-abundance and sensitive antigens; the second is post-embedding labeling, which relies on the low-temperature resin embedding (e.

View Article and Find Full Text PDF

An one-pot method was used to prepare bimetallic nanozymes, with chitosan (CS) and l-tyrosine (L-Tyr) as stabilized dispersed colloidal solutions and a carrier for gold-platinum single atoms (Au-Pt SAs), which exhibited excellent peroxidase activity. A colorimetric method based on CS/L-Tyr/Au-Pt SAs nanozymes was constructed for the colorimetric detection of quercetin (QR) in human serum and orange juice. The synthesized bimetallic nanozymes were characterized by SEM, TEM, HAADF-STEM, FT-IR, XRD and XPS techniques to demonstrate the successful synthesis of CS/L-Tyr/Au-Pt SAs nanozymes.

View Article and Find Full Text PDF