Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The treatment of osteochondral defects is a major topic of current research and has become more important in our aging society. The challenges in bone and cartilage repair arise from the structure and function of these different tissues. This study proposes a biphasic model combining cartilage and bone scaffolds based on silk fibroin (SF) biopolymers. For the cartilage phase, SF scaffolds were coated with gelatin and/or agarose layers. For bone scaffolds, mineralized collagen solutions were coated on or mixed into the SF matrix. The physical and biological properties of these samples were evaluated to find the optimum conditions for a biphasic scaffold. Modification of both cartilage and bone scaffolds resulted in a smaller pore size, lower swelling rate, and higher rigidity. Gelatin significantly promoted cartilage biomarker production and agarose facilitated cell proliferation, inducing a homogeneous cell distribution and stimulating chondrogenesis. Furthermore, modification with mineralized collagen decreased cell proliferation in osteoblast progenitors but enhanced differentiation into osteoblasts. The optimum conditions were found to be a mixture of gelatin and agarose for the coating in the cartilage phase and low mineralized collagen content for the bone phase.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1748-605X/ade7e4DOI Listing

Publication Analysis

Top Keywords

bone scaffolds
12
mineralized collagen
12
cartilage bone
8
cartilage phase
8
optimum conditions
8
cell proliferation
8
cartilage
6
bone
5
bio-design material
4
material scaffold
4

Similar Publications

Recent Progress of 3D Printing Bioceramic Scaffolds for Bone Regeneration.

Tissue Eng Part B Rev

September 2025

The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China.

The reconstruction of critical-sized bone defects remains a challenging clinical problem. At present, the implantation of autogenous and allogeneic grafts is the main clinical treatment strategy but faces some drawbacks, such as inadequate source, donor site-related complications, and immune rejection, driving researchers to develop artificial bone substitutes based on distinct materials and fabrication technologies. Among the bone substitutes, bioceramic-based substitutes exhibit a remarkable biocompatibility, which can also be designed to degrade concomitantly with the formation of new bone.

View Article and Find Full Text PDF

Diatom-Inspired Scaffold for Infected Bone Defect Therapy: Achieving Stable Photothermal Properties and Coordinated Antibacterial-Osteogenic Functions.

Adv Mater

September 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.

Bone defect therapy frequently encounters bacterial infections and chronic inflammation, which impair bone regeneration and threaten implant stability. Iron oxide nanoparticles have attracted attention due to cost-effectiveness, biocompatibility, and metabolic safety. However, iron oxide nanoparticles still struggle to balance low-temperature efficient antibacterial activity, effective immunomodulation, and bone regeneration.

View Article and Find Full Text PDF

Reconstructing bone defects remains a significant challenge in clinical practice, driving the urgent need for advanced artificial grafts that simultaneously promote vascularization and osteogenesis. Addressing the critical trade-off between achieving high porosity/strength and effective bioactivity at safe ion doses, we incorporated strontium (Sr) into β-tricalcium phosphate (β-TCP) scaffolds with a triply periodic minimal surface (TPMS) structure using digital light processing (DLP)-based three-dimensional (3D) printing. Systematically screening Sr concentrations (0-10 mol%), we identified 10 mol% as optimal, leveraging the synergy between the biomimetic TPMS architecture, providing exceptional mechanical strength (up to 1.

View Article and Find Full Text PDF

Triply periodic minimal surfaces have garnered significant interest in the field of biomaterial scaffolds due to their unique structural properties, including a high surface-to-volume (S/V) ratio, tunable permeability, and the potential for enhanced biocompatibility. Bone scaffolds necessitate specific features to effectively support tissue regeneration. This study examines the permeability and active cell proliferation area of advanced Triply Periodic Minimal Surface (TPMS) lattice structures, focusing on a novel lattice design.

View Article and Find Full Text PDF

Electroactive ceramic biomaterials on the principle of bone piezoelectricity towards advanced bone engineering.

Biomater Adv

September 2025

Graduate School of Medical and Dental Science, Institute of Science Tokyo, 15-45 Yushima, Bunkyo, Tokyo, 113-8510, Japan; Advanced Central Research Organization, Teikyo University, 2-11-1, Kaga, Itabashi, Tokyo, 173-8605, Japan.

This review concentrates on the electroactive ceramic biointerfaces inspired by bone piezoelectricity for advanced ceramic biomaterials. Bone generates electrical potentials through the piezoelectric properties of collagen fibrils and apatite minerals under mechanical loading. These electrical signals influence osteoconductivity and regenerative capacity by osteogenic cells.

View Article and Find Full Text PDF