98%
921
2 minutes
20
NOVA1 and NOVA2 are neuron-specific RNA-binding proteins essential for alternative splicing (AS), influencing neurodevelopment by regulating transcript diversity. These proteins recognize YCAY sequences on pre-mRNA, regulating exon inclusion or skipping, intron retention, and alternative polyadenylation. Despite their 75% sequence identity, NOVA1 and NOVA2 exhibit distinct spatiotemporal expression patterns and target specificities, with NOVA2 predominantly expressed in cortical regions and NOVA1 in the cerebellum and spinal cord. De novo truncating variants in NOVA2 are responsible for a severe neurodevelopmental disorder (NDD), characterized by intellectual developmental disorder, motor delay, autistic features, and corpus callosum hypoplasia. Loss of Nova2 in animal models results in brain development anomalies, such as corpus callosum agenesis in mice, which mirrors the human neurodevelopmental phenotype. If direct evidence remains limited, emerging data suggest that mutations in NOVA1 might also be involved in neurological disorders. The contribution of other mRNA-binding proteins to NDD further underscores the critical role of regulation of RNA processing in neurodevelopment. This review explores the diverse functions of NOVA proteins, their impact on AS during brain development, and their implications in brain disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gde.2025.102373 | DOI Listing |
Genome Res
September 2025
College of Life Science, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China;
Poultry egg production is shaped by the intertwined action of multiple physiological systems, greatly magnifying the complexity of its underlying genetic regulation. Although multitissue mapping of regulatory variants offers a powerful route to untangle this complexity, comprehensive data sets in ducks remain scarce. Meanwhile, the contributions of peripheral systems beyond neuroendocrine regulation on poultry egg production are still largely unexplored.
View Article and Find Full Text PDFJ Neurosci
September 2025
College of Life Sciences, Zhejiang University, Hangzhou 310058, P.R. China
Nonsense-mediated mRNA decay (NMD) is a conserved RNA surveillance mechanism that degrades transcripts with premature termination codons (PTCs) and finetunes gene expression by targeting RNA transcripts with other NMD inducing features. This study demonstrates that conditional knockout of , a key NMD component, in oligodendrocyte lineage cells disrupts the degradation of PTC-containing transcripts, including aberrant variants of the RNA-binding protein The loss of SMG5 in both sexes of mice impaired oligodendrocyte differentiation, reduced myelin gene expression, and led to thinner myelin sheaths and compromised motor function in mice. Mechanistically, HNRNPL was shown to regulate the alternative splicing of myelin-associated genes and , and promote oligodendrocyte differentiation.
View Article and Find Full Text PDFGenomics
September 2025
Laboratory of Single Cell Analyses, Institute of Bioorganic Chemistry Polish Academy of Sciences, Zygmunta Noskowskiego str. 12/14, 61-704 Poznań, Poland. Electronic address:
Despite advancements in genome annotation tools, challenges persist for non-classical model organisms with limited genomic resources, such as Schmidtea mediterranea. To address these challenges, we developed a flexible and scalable genome annotation pipeline that integrates short-read (Illumina) and long-read (PacBio) sequencing technologies. The pipeline combines reference-based and de novo assembly methods, effectively handling genomic variability and alternative splicing events.
View Article and Find Full Text PDFBiotechnol Adv
September 2025
Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, China Jiliang University, Hangzhou 310018, China. Electronic address:
Nanopore direct RNA sequencing (DRS) is a transformative technology that enables full-length, single-molecule sequencing of native RNA, capturing transcript isoforms and preserving epitranscriptomic modifications without cDNA conversion. This review outlines key advances in DRS, including optimized protocols for mRNA, rRNA, tRNA, circRNA, and viral RNA, as well as analytical tools for isoform quantification, poly(A) tail measurement, fusion transcript identification, and base modification profiling. We highlight how DRS has redefined transcriptomic studies across diverse systems-from uncovering novel transcripts and alternative splicing events in cancer, plants, and parasites to enabling the direct detection of m6A, m5C, pseudouridine, and RNA editing events.
View Article and Find Full Text PDFEMBO J
September 2025
Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
During a critical period of postnatal brain development, neural circuits undergo significant refinement coincident with widespread alternative splicing of hundreds of genes, which undergo altered splice site selection for the generation of isoforms essential for synaptic plasticity. Here, we reveal that neuronal activity-dependent phosphorylation of paxillin at its serine 119 (p-paxillin) acts as a molecular switch in the nucleus for the control of alternative splicing during this period. We show that following NMDA receptor activation, nuclear p-paxillin is recruited to nuclear speckles, where it interacts with splicing factors, such as U2AFs.
View Article and Find Full Text PDF