Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Equine infectious anemia virus (EIAV) is an important model for the study of pathogenesis in lentiviruses. Studies of viral genome organization and replication mechanisms are fundamental to the understanding of virus pathogenicity. In this study, we identified an unique transcript from EIAV in vivo and in vitro by Sanger sequencing and Northern blotting. The transcript contains a complete open reading frame and has length 369 nt. We named the protein encoded by this transcript S4 and demonstrated its expression in EIAV-infected cells. An S4-deficient EIAV infectious clone displayed obviously impaired virion release and attenuated virus replication in vitro, demonstrating that S4 plays a role in the release step of EIAV. The host restriction factor tetherin has broad-spectrum antiviral activity and prevents the release of a wide range of enveloped viruses, including lentiviruses. Here, we demonstrated that S4 enhances the release of the EIAV-like particle by counteracting the equine tetherin (eqTHN). S4 interacts with the eqTHN and sequesters it within intracellular membrane compartments, attenuating eqTHN expression on the cell surface and thereby disrupting its antiviral activity. Further investigation revealed that S4 retains eqTHN in the endoplasmic reticulum and trans-Golgi network through impacting its anterograde transport to the cell surface and may interfere with the posttranslational modification of this membrane protein. Collectively, our findings uncover an accessory protein, S4, of EIAV and reveal its ability to promote virion release by antagonizing the antiviral activity of the host restriction factor tetherin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12232724PMC
http://dx.doi.org/10.1073/pnas.2413703122DOI Listing

Publication Analysis

Top Keywords

host restriction
12
restriction factor
12
antiviral activity
12
accessory protein
8
equine tetherin
8
virion release
8
factor tetherin
8
cell surface
8
eiav
6
release
5

Similar Publications

Enteroinvasive bacterial pathogens are responsible for an enormous worldwide disease burden that critically affects the young and immunocompromised. is a gram-negative enteric pathogen closely related to the plague agent that colonizes intestinal tissues, induces the formation of pyogranulomas along the intestinal tract, and disseminates to systemic organs following oral infection of experimental rodents. Prior studies proposed that systemic tissues were colonized by a pool of intestinal replicating bacteria distinct from populations within Peyer's patches and mesenteric lymph nodes.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) exhibits a narrow species tropism, causing robust infections only in humans and experimentally inoculated chimpanzees. While many host factors and restriction factors are known, many more likely remain unknown, which has limited the development of mouse or other small animal models for HCV. One putative restriction factor, the black flying fox orthologue of receptor transporter protein 4 (RTP4), was previously shown to potently inhibit viral genome replication of several ER-replicating RNA viruses.

View Article and Find Full Text PDF

When pathogenic bacteria colonize a wound, they can create an alkaline ecological niche that selects for their survival by creating an inflammatory environment restricting healthy wound healing to proceed. To aid healing, wound acidification has been exploited to disrupt this process and stimulate fibroblast growth, increase wound oxygen concentrations, minimize proteolytic activity, and restimulate the host immune system. Within this study, we have developed cobalt-doped carbon quantum dot nanoparticles that work together with mild acetic acid, creating a potent synergistic antimicrobial therapy.

View Article and Find Full Text PDF

Unlabelled: Zika virus (ZIKV) is the lone member of Flavivirus family known to cause congenital glaucoma following exposure. The molecular mechanisms of ZIKV-induced glaucoma remain elusive, with no known therapeutic modalities. Autophagy plays a dual role in viral infections and glaucoma pathogenesis.

View Article and Find Full Text PDF

High morbidity and mortality associated with human β-coronavirus (CoV) infection highlight the need to determine host responses to infection and develop anti-viral therapies. Gap junction intercellular communication (GJIC), particularly involving Connexin43 (Cx43), is vital for maintaining central nervous system (CNS) homeostasis, and disruption of GJIC is a well-documented pathogenic mechanism among β-coronaviruses. Specifically, murine β-coronavirus, mouse hepatitis virus (MHV-A59) inoculation in the mouse brain causes acute-stage CNS viral spread and chronic neuroinflammatory demyelination while causing pronounced downregulation of Cx43 at the acute stage, reflecting a critical role in CNS pathology.

View Article and Find Full Text PDF