98%
921
2 minutes
20
The acquisition of novel muscle activity patterns is a key aspect of motor skill learning, which can be seen, for example, when beginner musicians learn new guitar or piano chords. To study this process, we introduce here a new paradigm that requires learning new patterns of flexion and extension of multiple fingers. First, participants practiced all the 242 possible combinations of isometric finger flexion and extension around the metacarpophalangeal joint (i.e., chords). We found that some chords were initially extremely challenging, but with practice, participants could eventually achieve them quickly and synchronously, showing that the initial difficulty did not reflect hard biomechanical constraints imposed by the interaction of tendons and ligaments. In a second experiment, we found that chord learning was largely chord-specific and did not generalize to untrained chords. Finally, we explored which factors made it difficult to produce some chords quickly and synchronously. Both variables were well predicted by the muscle activity pattern required by the chord. Specifically, chords that required muscle activity patterns that were smaller and more similar to muscle activity patterns required by everyday hand use could be produced more synchronously. Together, our results suggest that our new paradigm provides a valuable tool to study the neural processes underlying the acquisition of novel muscle activity patterns in the human motor system. In this study, we introduce a paradigm to study the learning of novel muscle activation patterns that deviate from those we are used to producing in everyday activities. Participants learned to produce different combinations of concurrent flexion and extension of 1-5 fingers of the right hand. We found that the ability to produce muscle activation patterns quickly and synchronously depended on how far they were from everyday hand activities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jn.00088.2025 | DOI Listing |
PLoS One
September 2025
Biobank of Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China.
Heart failure (HF) and lung cancer (LC) often coexist, yet their shared molecular mechanisms are unclear. We analyzed transcriptome data from the NCBI Gene Expression Omnibus (GEO) database (GSE141910, GSE57338) to identify 346 HF‑related differentially expressed genes (DEGs), then combined weighted gene co-expression network analysis (WGCNA) pinpointed 70 hub candidates. Further screening of these 70 hub candidates in TCGA lung cancer cohorts via LASSO, Random Forest, and multivariate Cox regression suggested CYP4B1 as the only independent prognostic marker.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium.
Objective: This study investigates the mechanisms behind exercise capacity in adults with type 2 diabetes mellitus (T2DM), focusing on central and peripheral components, as described by the Fick equation.
Methods: A cross-sectional study of 141 adults with T2DM was conducted, using cardiopulmonary exercise testing, near-infrared spectroscopy (NIRS) and exercise echocardiography. Participants with sufficient-quality NIRS data were stratified into tertiles based on percentage predicted VO₂peak.
J Appl Physiol (1985)
September 2025
Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa.
Long-term exercise training can attenuate sympathetic vasoconstriction in both resting and contracting skeletal muscle; however, the impact of an acute bout of exercise on vasoconstrictor responsiveness and the influence of aging is unknown. Therefore, we tested the hypothesis that an acute bout of exercise will blunt sympathetic-mediated vasoconstriction in resting and contracting skeletal muscle of young and older adults. Twenty-one adults (10 Young: 23±5 yr and 11 Older: 65±8 yr) performed a rest and a rhythmic handgrip exercise trial before and after either 30 minutes of cycling exercise (60-65% HRmax) or a time control period (seated rest).
View Article and Find Full Text PDFJ Appl Physiol (1985)
September 2025
Ludwig Engel Centre for Respiratory Research, Westmead Hospital, Sydney, NSW, Australia.
Lung volume change modifies pharyngeal airway patency by altering breathing-related passive force transmission between lower and upper airways (via tracheal and other connections). We hypothesise that such force transmission may also impact active upper airway dilator muscle function by altering resting muscle length. The aim of this study was to determine the relationship between end expiratory lung volume (EELV) and ability of sternohyoid muscle (SH) contraction to alter pharyngeal airway patency.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
September 2025
School of Science and Health, Western Sydney University, Sydney, Australia.