98%
921
2 minutes
20
Ferroptosis, a form of regulated cell death driven by iron accumulation and lipid peroxidation, is implicated in various diseases, but effective therapeutic strategies remain limited. Lysosomal impairments cause iron dysregulation and initiate ferroptosis, which potentially contribute to ionizing radiation-induced tissue damages. Here, the role of intercellular lysosomal regulation in governing iron homeostasis and protecting against ferroptosis is investigated in models of stem cell aggregation and mandibular regeneration post-irradiation. Lysosomes are discovered to accumulate in specific regions within multi-stem cell aggregates and regulate cell aggregate formation based on iron control, which is occurred through hypoxic signaling-driven lysosomal redistribution mediated by extracellular vesicles. These vesicles exhibit lysosomal features and possess iron-regulating properties, which rescue lysosomal defects to restore iron homeostasis and mitigate ferroptosis in recipient endothelial cells against the irradiation challenge. Based on lysosomal regulation and anti-ferroptosis, these cell aggregate-released extracellular vesicles (CA-EVs) stimulate the growth of CD31endomucin specialized vessels despite irradiation both in vitro and in vivo, which further promote bone regeneration of post-irradiation mandibular defect. These findings highlight the potential of taking CA-EVs as natural therapeutic agents to safeguard lysosomal function, modulate iron metabolism, and protect against ferroptosis, paving an avenue for combating post-irradiation endothelial injuries and enhancing tissue regeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/advs.202505070 | DOI Listing |
Brain Res Bull
September 2025
Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, the 1(st) Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China. Electronic address:
Stroke is one of the leading causes of death and disability worldwide, with ischemic stroke accounting for the majority of cases. Intercellular communication is critical to its prognostic impact, and extracellular vesicles (EVs) are an emerging important mechanism. EVs are increasingly recognized as key mediators of crosstalk between neurons and glial cells, affecting processes such as neuroinflammation, oxidative stress and tissue repair.
View Article and Find Full Text PDFJ Invest Dermatol
September 2025
Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA. Electronic address:
Wound healing has been extensively studied through the lens of inflammatory disorders and cancer, but limited attention has been given to hematophagy and arthropod-borne diseases. Hematophagous ectoparasites, including ticks, subvert the wound healing response to maintain prolonged attachment and facilitate blood-feeding. Here, we unveil a strategy by which extracellular vesicles (EVs) ensure blood-feeding and arthropod survival in three medically relevant tick species.
View Article and Find Full Text PDFRedox Biol
September 2025
National Clinical Research Center for Geriatric Diseases, The Second Medical Center, Chinese PLA General Hospital, 100853, Beijing, China; Institute of Geriatric Medicine, The Second Medical Center, Chinese PLA General Hospital, 100853, Beijing, China.
Small extracellular vesicles (sEVs) critically orchestrate inter-tissue and inter-organ communications and may play essential roles in heart-tumor interaction. However, whether cancer-secreted sEVs affect the progression of doxorubicin-induced cardiotoxicity (DOXIC) via orchestrating the tumor cell-cardiomyocyte crosstalk has not yet been explored. Herein, we reveal that Doxorubicin (DOX)-treated breast cancer cells secrete sEVs (D-BCC-sEVs) that exacerbate DOX-induced ferroptosis of human iPSC-derived cardiomyocytes (hiCMs).
View Article and Find Full Text PDFAm J Reprod Immunol
September 2025
Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
Objective: Exosomes are secreted by most cell types and reflect the internal state of their cells of origin, playing crucial roles in the progression of various pathological conditions. Endometriosis is a chronic, estrogen-dependent inflammatory disease characterized by the ectopic presence of endometrial-like tissue outside the uterus, including in the ovaries, fallopian tubes, and peritoneal cavity. It primarily affects women of reproductive age and is often associated with infertility.
View Article and Find Full Text PDFJ Invest Dermatol
September 2025
Department of Surgery, University of California San Diego, La Jolla, CA, United States; Department of Dermatology, University of California San Diego, La Jolla, CA, United States. Electronic address:
Normal cutaneous wound healing is a multicellular process that involves the release of small extracellular vesicles (sEVs) that coordinate intercellular communication by delivery of sEV payloads to recipient cells. We have recently shown how the pro-reparative activity of inflammatory cell sEVs, especially macrophage and neutrophil-derived sEVs, in the wound bed is dysregulated in impaired wound healing. Here we show that loss of Rab27A, a small GTPase that has a regulatory function in sEV secretion, reduces the release of neutrophil and macrophage-derived sEVs.
View Article and Find Full Text PDF