98%
921
2 minutes
20
Stroke is a leading cause of death and disability. The therapeutic potential of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) has shown considerable promise in rodent models of stroke. However, the therapeutic efficacy and safety of clinical-scale MSC-EVs for ischemic stroke are not well elucidated, especially in non-human primates. We developed a scalable production method for MSC-EVs using a 3D bioprocessing platform. EVs were isolated with a filter and tangential flow filtration and characterized using electron microscopy, nanoparticle tracking analysis, nanoflow cytometry analysis, proteomic and lipidomic analysis using mass spectrometry, and RNA sequencing. We determined the appropriate dosage and frequency of intravenous administration of EVs in a mouse stroke model. A biodistribution study of the selected dose regimen was performed using the internal cargo of EVs, human mitochondrial DNA. We then confirmed the efficacy of EVs in a marmoset stroke model. Improvement in behavioural tests and MRI-based neuroplasticity were compared between the control and EV groups through blinded evaluation. The proteome profiles of the infarcted hemisphere were also evaluated. EV products showed suitable lot-to-lot consistency. In a mouse stroke model, intravenous administration of a dose of 6 × 10 EVs for 5 days resulted in the smallest infarct volume and improvement in motor function. A biodistribution study showed that EVs were rapidly distributed into systemic organs and were relatively specifically distributed to the infarcted brain areas. Intravenous administration of an equivalent dose (3.5 × 10 EVs for 5 days) in a marmoset stroke model significantly improved motor functions and anatomical connectivity on diffusion MRI, and significantly reduced infarct volume. Proteomics analyses indicated that EV treatment promoted neurogenesis, synapse organization, and vascular development. In conclusion, this study is the first to demonstrate that a clinical-scale EV product is safe and significantly enhances function recovery and neuroplasticity in a non-human primate stroke model, offering a promising treatment for human stroke.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12183388 | PMC |
http://dx.doi.org/10.1002/jev2.70110 | DOI Listing |
Stroke
September 2025
Departments of Radiology and Neurology, Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston (E.L., R.M.P., K.H., E.H.L., E.E.).
Background: Despite promising preclinical results, remote limb ischemic postconditioning efficacy in human stroke treatment remains unclear, with mixed clinical trial outcomes. A potential reason for translational difficulties could be differences in circadian rhythms between nocturnal rodent models and diurnal humans.
Methods: Male C57BL/6J mice were subjected to transient focal cerebral ischemia and then exposed to remote postconditioning during their active or inactive phase and euthanized at 24 hours and 3 days.
Stroke
September 2025
Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York. (F.C.P., M.R., M.S., A.K., S.G., S.A., S.P., J.C., D.J.R.).
Background: Major ABO-incompatible platelet transfusions are associated with poor intracerebral hemorrhage (ICH) outcomes, yet drivers for this relationship remain unclear. Brain magnetic resonance imaging (MRI) ischemic lesions after ICH are neuroimaging biomarkers of secondary brain injury and are associated with poor outcomes. Given that ABO-incompatible platelet transfusions can induce immune complex formation, thrombo-inflammation, and endothelial barrier disruption, factors that could exacerbate cerebral ischemia, we explored whether major ABO-incompatible platelet transfusions are risk factors for ischemic lesions on brain MRI after ICH.
View Article and Find Full Text PDFCirc Genom Precis Med
September 2025
Division of Cardiology, Emory University School of Medicine, Atlanta, GA. (A.K.Y., A.C.R., L.S.S., A.A.Q., Y.V.S.).
Background: Cardio-kidney-metabolic (CKM) disease represents a significant public health challenge. While proteomics-based risk scores (ProtRS) enhance cardiovascular risk prediction, their utility in improving risk prediction for a composite CKM outcome beyond traditional risk factors remains unknown.
Methods: We analyzed 23 815 UK Biobank participants without baseline CKM disease, defined by -Tenth Revision codes as cardiovascular disease (coronary artery disease, heart failure, stroke, peripheral arterial disease, atrial fibrillation/flutter), kidney disease (chronic kidney disease or end-stage renal disease), or metabolic disease (type 2 diabetes or obesity).
Stroke
September 2025
Department of Neurology, Yale School of Medicine, New Haven, CT (L.H.S.).
Preclinical stroke research faces a critical translational gap, with animal studies failing to reliably predict clinical efficacy. To address this, the field is moving toward rigorous, multicenter preclinical randomized controlled trials (mpRCTs) that mimic phase 3 clinical trials in several key components. This collective statement, derived from experts involved in mpRCTs, outlines considerations for designing and executing such trials.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
September 2025
Department of Mathematics, University of California Davis, Davis, CA, USA.
Many different microswimmers propel themselves using flagella that beat periodically. The shape of the flagellar beat and swimming speed have been observed to change with fluid rheology. We quantify changes in the flagellar waveforms of in response to changes in fluid viscosity using (i) shape mode analysis and (ii) a full swimmer simulation to analyse how shape changes affect the swimming speed and to explore the dimensionality of the shape space.
View Article and Find Full Text PDF