Conditional QTL/QTN mapping for seed width and mining candidate genes based on soybean FW-RIL population.

Mol Genet Genomics

Key Laboratory of Soybean Biology, Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics, Ministry of Agriculture, Northeast Agricultural University, Harbin, China.

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Soybean seed width (SW) is a pivotal quantitative trait influencing both seed yield and appearance quality, controlled by a complex interplay of multiple genes and environmental factors. This research was undertaken to identify significant genetic loci and candidate genes associated with SW, thereby facilitating the development of molecular markers crucial for advancing soybean breeding programs. In this study, a four-way recombinant inbred line (FW-RIL) population, derived from the cross of (Kenfeng14 × Kenfeng15) × (Heinong48 × Kenfeng19), alongside a diverse germplasm population (GP) comprising 455 soybean cultivars, served as the genetic material. Phenotypic measurements of SW were meticulously recorded for the FW-RILs across three distinct environments and for the GP across four environments. Subsequent linkage analysis in the FW-RIL population and genome-wide association studies (GWAS) in the GP were conducted to map the quantitative trait loci (QTLs) and quantitative trait nucleotides (QTNs) underlying SW. These analyses successfully identified a total of 51 QTLs and 103 QTNs associated with SW. Furthermore, detailed investigation of seven QTNs attenuation regions located within the consistently detected qSW-7-2 region was performed to predict potential candidate genes. This process led to the selection of three promising genes; Glyma.07G004700, Glyma.07G006300, and Glyma.07G013700 based on the integrated evidence from sequence variation analysis among parental lines, comprehensive haplotype analysis within the mapping populations, and relevant functional annotation. The comprehensive identification of these QTLs, QTNs, and particularly the three prioritized candidate genes, offers significant insights into the genetic control of soybean seed width and provides a robust foundation for the development of effective molecular markers to enhance the efficiency of marker-assisted selection for improved soybean yield.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00438-025-02271-5DOI Listing

Publication Analysis

Top Keywords

candidate genes
16
seed width
12
fw-ril population
12
quantitative trait
12
soybean seed
8
molecular markers
8
genes
6
soybean
6
conditional qtl/qtn
4
qtl/qtn mapping
4

Similar Publications

Objective: This study employs integrated network toxicology and molecular docking to investigate the molecular basis underlying 4-nonylphenol (4-NP)-mediated enhancement of breast cancer susceptibility.

Methods: We integrated data from multiple databases, including ChEMBL, STITCH, Swiss Target Prediction, GeneCards, OMIM and TTD. Core compound-disease-associated target genes were identified through Protein-Protein Interaction (PPI) network analysis.

View Article and Find Full Text PDF

Heart failure (HF) and lung cancer (LC) often coexist, yet their shared molecular mechanisms are unclear. We analyzed transcriptome data from the NCBI Gene Expression Omnibus (GEO) database (GSE141910, GSE57338) to identify 346 HF‑related differentially expressed genes (DEGs), then combined weighted gene co-expression network analysis (WGCNA) pinpointed 70 hub candidates. Further screening of these 70 hub candidates in TCGA lung cancer cohorts via LASSO, Random Forest, and multivariate Cox regression suggested CYP4B1 as the only independent prognostic marker.

View Article and Find Full Text PDF

Landscape genomics analysis reveals the genetic basis underlying cashmere goats and dairy goats adaptation to frigid environments.

Stress Biol

September 2025

Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.

Understanding the genetic mechanism of cold adaptation in cashmere goats and dairy goats is very important to improve their production performance. The purpose of this study was to comprehensively analyze the genetic basis of goat adaptation to cold environments, clarify the impact of environmental factors on genome diversity, and lay the foundation for breeding goat breeds to adapt to climate change. A total of 240 dairy goats were subjected to genome resequencing, and the whole genome sequencing data of 57 individuals from 6 published breeds were incorporated.

View Article and Find Full Text PDF

Purpose: To define the genetic architecture of foveal morphology and explore its relevance to foveal hypoplasia (FH), a hallmark of developmental macular disorders.

Methods: We applied deep-learning algorithms to quantify foveal pit depth from central optical coherence tomography (OCT) B-scans in 61,269 UK Biobank participants. A genome-wide association study (GWAS) was conducted using REGENIE, adjusting for age, sex, height, and ancestry.

View Article and Find Full Text PDF

Background: Developmental and epileptic encephalopathies (DEEs) comprise a diverse range of disorders that can arise from both genetic and non-genetic causes. Genetic DEEs are linked to pathogenic variants in various genes with different molecular functions. The wide clinical and genetic variability found in DEEs poses a considerable challenge for accurate diagnosis even with the use of comprehensive diagnostic approaches such as whole genome sequencing (WGS).

View Article and Find Full Text PDF