98%
921
2 minutes
20
The significance of mass spectrometry lies in its unparalleled ability to accurately identify and quantify molecules in complex samples, providing invaluable insights into molecular structures and interactions. Here, we leverage diamond nanostructures as highly sensitive mass sensors by utilizing a self-excitation mechanism under an electron beam in a conventional scanning electron microscope (SEM). The diamond molecular balance (DMB) exhibits a practical mass resolution of 4.07 MDa, based on its notable mechanical quality factor and frequency stability, along with a broad dynamic range from MDa to TDa. This positions the DMB at the forefront of nanoelectromechanical system (NEMS)-based mass spectrometry operating at room temperature. Notably, the DMB demonstrated its ability to measure the mass of a single bacteriophage T4 by precisely locating the analyte on the device. These findings demonstrate the capability and potential of the DMB as a revolutionary tool for mass spectrometry at room temperature.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12232386 | PMC |
http://dx.doi.org/10.1021/acs.nanolett.5c02032 | DOI Listing |
Eur J Mass Spectrom (Chichester)
September 2025
Ryazan State University named for S.A. Yesenin, Ryazan, Russia.
The ion-optical properties of the second stability region () formed by the square wave shape potential with a duty cycle of 50% are studied as applied to the operation of a linear ion trap. The stability diagram is presented in detail, the stability parameters and , which determine the spectrum of ion oscillations, are calculated; the pseudopotential well-depth for this zone is given. The LIT acceptances for sinusoidal and rectangular wave forms are shown for comparison.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
September 2025
Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, 51452 P.O. Box 6666, Saudi Arabia.
Foodborne illnesses pose a significant public health threat globally, particularly in Saudi Arabia, where the rapid growth of the food service sector has increased the risk of exposure to multidrug-resistant (MDR) bacteria. Traditional microbiological methods are often time-consuming and may lack precision, highlighting the need for faster and more accurate diagnostic alternatives. In this study, Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) was employed for the rapid and precise identification of bacterial contaminants in ready-to-eat (RTE) foods, alongside an assessment of their antibiotic resistance profiles.
View Article and Find Full Text PDFIndian Pediatr
September 2025
Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India.
Objective: To determine the cyclosporine trough (C) and two-hour post-dose concentrations (C) in children with nephrotic syndrome (NS) and study the factors influencing them.
Methods: In this ambispective cohort study, children with NS (including frequently relapsing, steroid-dependent and steroid-resistant nephrotic syndrome) on cyclosporine therapy were enrolled. Clinical and laboratory data were recorded.
Biotechnol Lett
September 2025
The United Graduate School of Agricultural Science, Iwate University, Ueda-3, Morioka, Iwate, 020-8550, Japan.
Plasmalogens are a subclass of glycerophospholipids characterized by a vinyl-ether bond at the sn-1 position; they play several physiological roles including membrane stabilization, antioxidant activity, and signal transduction. While choline, ethanolamine, serine, and glycerol plasmalogens (PlsCho, PlsEtn, PlsSer, and PlsGro) are naturally abundant, inositol plasmalogens (PlsIns) are rare. In contrast to the limited occurrence of PlsIns, phosphatidylinositol is a biologically crucial lipid, and its enzymatic biosynthesis from phosphatidylcholine has been extensively studied.
View Article and Find Full Text PDFJ Phys Chem A
September 2025
Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
The gas-phase structures of dibenzo-24-crown-8 (DB24C8) and dinaphtho-24-crown-8 (DN24C8) complexes with divalent metal ions (Mg, Ca, Sr, Ba, Fe, Ni, and Zn) were investigated by cryogenic ion mobility-mass spectrometry (IM-MS) in combination with density functional theory calculations. Several complexes, particularly those of DN24C8, exhibited multiple coexisting conformers. DFT-optimized structures were classified based on the relative orientation of the two aromatic rings in the crown ether.
View Article and Find Full Text PDF