98%
921
2 minutes
20
Nanobodies offer significant therapeutic potential due to their small size, stability, and versatility. Although advancements in computational protein design have made designing de novo nanobodies increasingly feasible, there are limited tools specifically tailored for this purpose. Rosetta with its specialized protocols, is a prominent tool for nanobody design but is limited by a high false-negative rate, necessitating extensive high-throughput screening. This results in increased costs, time, and labor due to the need for large-scale experimentation and detailed structural analysis. To address current challenges in nanobody design, we introduce NanoBinder, an interpretable machine learning model that predicts nanobody-antigen binding using Rosetta energy scores. NanoBinder utilizes a Random Forest model trained on experimentally validated complexes and can be seamlessly integrated into the Rosetta software. It employs SHAP summary plots for interpretability, which helps identify key features influencing binding interactions. Experimentally validated on forty-nine diverse nanobodies, NanoBinder accurately predicts non-binders and shows reasonable performance in identifying binders. This approach significantly enhances predictive accuracy, reduces the need for extensive experimental assays, and accelerates nanobody development, thereby offering a powerful tool to mitigate the costs, time, and labor associated with high-throughput screening.Scientific contribution This study introduces NanoBinder, a machine learning framework for predicting nanobody-antigen binding using Rosetta-derived energy features. Through rigorous experimental validation across diverse nanobody sets, NanoBinder enhances nanobody screening workflows by reducing false positives and minimizing reliance on extensive wet-lab assays. The approach bridges the gap between physics-based modeling and data-driven prediction in nanobody design.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12172308 | PMC |
http://dx.doi.org/10.1186/s13321-025-01040-1 | DOI Listing |
Bull Entomol Res
September 2025
Instituto de Biotecnología y Ecología Aplicada, Universidad Veracruzana, Xalapa, Veracruz, México.
Insect pupae change morphologically (e.g., pigmentation of eyes, wings, setae and legs) during the intrapuparial period.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
While the cancer genome is well-studied, the nongenetic exposome of cancer remains elusive, particularly for regionally prevalent cancers with poor prognosis. Here, by employing a combined knowledge- and data-driven strategy, we profile the chemical exposome of plasma from 53 healthy controls, 14 esophagitis and 101 esophageal squamous cell carcinoma (ESCC) patients, and 46 esophageal tissues across 12 Chinese provinces, integrating inorganic, endogenous, and exogenous chemicals. We first show that components of the ESCC chemical exposome mediate the relationship between ESCC-related dietary/lifestyle factors and clinic health status indicators.
View Article and Find Full Text PDFJAMA Netw Open
September 2025
Department of Social Epidemiology, Graduate School of Medicine and School of Public Health, Kyoto University, Kyoto, Japan.
Importance: Previous studies have suggested that social participation helps prevent depression among older adults. However, evidence is lacking about whether the preventive benefits vary among individuals and who would benefit most.
Objective: To examine the sociodemographic, behavioral, and health-related heterogeneity in the association between social participation and depressive symptoms among older adults and to identify the individual characteristics among older adults expected to benefit the most from social participation.
Nutr Health
September 2025
Independent researcher, Rome, Italy.
Artificial intelligence (AI) is increasingly applied in nutrition science to support clinical decision-making, prevent diet-related diseases such as obesity and type 2 diabetes, and improve nutrition care in both preventive and therapeutic settings. By analyzing diverse datasets, AI systems can support highly individualized nutritional guidance. We focus on machine learning applications and image recognition tools for dietary assessment and meal planning, highlighting their potential to enhance patient engagement and adherence through mobile apps and real-time feedback.
View Article and Find Full Text PDFMed Biol Eng Comput
September 2025
Department of Computer Science, Università degli Studi di Bari Aldo Moro, Bari, Italy.
Fetal standard plane detection is essential in prenatal care, enabling accurate assessment of fetal development and early identification of potential anomalies. Despite significant advancements in machine learning (ML) in this domain, its integration into clinical workflows remains limited-primarily due to the lack of standardized, end-to-end operational frameworks. To address this gap, we introduce FetalMLOps, the first comprehensive MLOps framework specifically designed for fetal ultrasound imaging.
View Article and Find Full Text PDF