98%
921
2 minutes
20
Seed cones in gymnosperms consist of scales composed of dead cells at maturity. In , seed release occurs when entire seed-scale complexes, including sterile bracts that support the ovuliferous scales, are shed, causing the cone to disintegrate. This process is driven by the hygroscopic movements of the scales, which result from the reversible and uneven deformation of dead tissues in response to changes in water content. Unlike pine seed cones, which serve as a model for scale movement studies, fir features large, lamina-like ovuliferous scales that undergo extensive movements, including significant changes in surface area and profound shape transformations. Therefore, the objective of this study was to elucidate the mechanism of scale movement in fir. Quantification of surface deformation of the scale lamina and isolated tissues during transitions between dry and wet states revealed significantly higher deformation of abaxial than adaxial scale surface. Analysis of scale anatomy and chemical composition of cell walls identified three plate-shaped building blocks of the lamina: a relatively loose adaxial plate; a plate including vascular bundles built of thick-walled xylem fibers, with walls rich in xylosyl residues; an abaxial plate rich in mannosyl residues and comprising scattered sclerenchyma fibers and compact epidermis. Mechanical damaging of lamina surface and dissection of individual plates showed that lamina actuation is resilient and lamina movements are driven by interplay between the three plates. The relative plate contribution to the lamina volume tunes the extent of hygroscopic movements. In particular, different contribution of the adaxial plate to the scale thickness and related asymmetry of position of vascular bundle plate explain the profound discrepancy in the degree of scale bending despite the similarities in tissue structure, chemical composition and surface strains of individual scales. We postulate that the hygroscopic movements are tuned by simple quantitative modifications of the lamina Bauplan.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12162492 | PMC |
http://dx.doi.org/10.3389/fpls.2025.1603330 | DOI Listing |
Micromachines (Basel)
July 2025
Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Ocean University, Zhanjiang 524088, China.
Firstly, this paper reviews the fundamental theories of solid surface wettability and contact angle hysteresis. Subsequently, it further introduces four typical wettability-engineered surfaces with low hysteresis (superhydrophobic, superamphiphobic, super-slippery, and liquid-like smooth surfaces). Finally, it focuses on the latest research progress in the field of droplet manipulation on open planar surfaces with engineered wettability.
View Article and Find Full Text PDFSensors (Basel)
August 2025
Electronic Information School, Wuhan University, Wuhan 430072, China.
Flexible hydrogel sensors demonstrate emerging applications, such as wearable electronics, soft robots, and humidity smart devices, but their further application is limited due to their single-responsive behavior and unstable, low-sensitivity signal output. This study develops a dual-responsive starch-based conductive hydrogel via a facile "one-pot" strategy, achieving mechanically robust pressure sensing and ultra-sensitive humidity detection. The starch-Poly (2,3-dihydrothieno-1,4-dioxin)-poly (styrenesulfonate) (PEDOT:PSS)-glutaraldehyde (SPG) hydrogel integrates physical entanglement and covalent crosslinking to form a porous dual-network architecture, exhibiting high compressive fracture stress (266 kPa), and stable electromechanical sensitivity (ΔI/I, ~2.
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2025
School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China. Electronic address:
Electronic skin (e-skin) faces challenges in achieving long-term signal stability and wearability due to the poor breathability, sweat accumulation, and limited sensitivity. This paper reports a multifunctional nanofibrous e-skin (PTZ-PPPB-PPT) fabricated via layer-by-layer electrospinning, integrating a hydrophobic layer (PVDF-TrFE/ZnO), a piezoelectric enhancement layer (PAN/PVP/PDA@BTO), and a thermochromic layer (PAN/PVP/TCM). Benefited from the asymmetric wettability and hierarchical fiber structure, the device enables unidirectional sweat transport (contact angle reduces from 132.
View Article and Find Full Text PDFMolecules
July 2025
Department of Smart Manufacturing Engineering, Changwon National University, Changwon 51140, Republic of Korea.
The coffee-ring effect, while harnessed in diverse fields such as biosensing and printing, poses challenges for achieving uniform particle deposition. Controlling this phenomenon is thus essential for precision patterning. This study proposes a novel method to regulate coffee-ring formation by tuning surface wettability via integrated nanoporous and hexagonal microstructures.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
July 2025
Laboratory of Nano and Microfluidics and Microsystems, LabMEMS, Mechanical Engineering Dept., POLI and COPPE, UFRJ, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
The physics and modelling of cooling and freezing of droplets in contact with a colder substrate are of interest in various engineering applications. This work provides experimental results of this process employing infrared thermography for temperature measurements at the droplet's surface. Also, a high-speed camera is employed to observe the recalescence period and measure the freezing front movement and the droplet shape change.
View Article and Find Full Text PDF