98%
921
2 minutes
20
Electronic skin (e-skin) faces challenges in achieving long-term signal stability and wearability due to the poor breathability, sweat accumulation, and limited sensitivity. This paper reports a multifunctional nanofibrous e-skin (PTZ-PPPB-PPT) fabricated via layer-by-layer electrospinning, integrating a hydrophobic layer (PVDF-TrFE/ZnO), a piezoelectric enhancement layer (PAN/PVP/PDA@BTO), and a thermochromic layer (PAN/PVP/TCM). Benefited from the asymmetric wettability and hierarchical fiber structure, the device enables unidirectional sweat transport (contact angle reduces from 132.8° to 0° within 5.72 s) while blocking reverse osmosis (hydrostatic resistance of 40 mmH₂O). When the piezoelectric sensor operates under excessive sweating conditions, the unidirectional sweat transport maintains skin surface dryness, thereby ensuring stable piezoelectric output during movement. Notably, the E-skin achieves a high output voltage (40 V at 30 N with a sensitivity of 0.825 V/N), exhibits rapid response/recovery (100/80 ms). It also demonstrates reversible thermochromism (25-40 °C) for real-time temperature visualization. Additionally, the device ensures superior comfort during prolonged wear by maintaining exceptional air permeability (8.05 mm/s) and outstanding mechanical flexibility (187.75 % elongation at break). This multifunctional integrated E-skin synergizes sweat management with temperature visualization, holding promising potential for applications in wearable healthcare, human-computer interaction, and dynamic environmental monitoring.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2025.138773 | DOI Listing |
J Phys Chem Lett
September 2025
Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
Achieving UVA/B-selective, skin-inspired nociceptors with perception and blockade functions at the single-unit device level remains challenging. This is because the device necessitates distinct components for every performance metric, thereby leading to complex preparation processes and restricted performance, as well as the absence of deep UV (UVB and below)-selective semiconductors. Here, to address this, we develop a structure-simplification skin-inspired nociceptor using a reverse type-II CuAgSbI/MoS heterostructure.
View Article and Find Full Text PDFAdv Mater
September 2025
Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland.
AlN is a core material widely used as a substrate and heat sink in various electronic and optoelectronic devices. Introducing luminescent properties into intrinsic AIN opens new opportunities for next-generation intelligent sensors, self-powered displays, and wearable electronics. In this study, the first evidence is presented of AlN crystals exhibiting satisfactory mechanoluminescence (ML), photoluminescence (PL), and afterglow performance, demonstrating their potential as novel multifunctional optical sensors.
View Article and Find Full Text PDFAim: To compare the preventative effect of the new antiseptic olanexidine gluconate (OLG) with conventional antiseptics on surgical site infections (SSIs) in gastroenterological surgery.
Methods: A comprehensive electronic literature search was conducted through November 2024 to identify studies comparing the occurrence of SSIs between OLG and conventional antiseptics (Conv), including povidone-iodine (PI) or chlorhexidine gluconate (CHG), for incisional site disinfection. The primary outcomes were the occurrence of overall SSI and incisional SSI (including superficial and deep incisional SSI).
ACS Appl Mater Interfaces
September 2025
Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China.
Radiation-induced skin injury (RSI) remains a significant clinical challenge due to persistent oxidative stress, chronic inflammation, and impaired tissue regeneration. It is demonstrated that RSI is accompanied by dysregulation of the immune microenvironment, wherein macrophages act as key regulators of all pathological cascades. Here, we developed a dual network hydrogel (Gel/SA@MXene) through dual cross-linking via UV irradiation and calcium ions to accelerate radiation-combined wound healing.
View Article and Find Full Text PDFSemin Vasc Surg
September 2025
Division of Vascular and Endovascular Surgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY; Comprehensive Wound Care Healing and Hyperbaric, Department of Surgery, Northwell Health System, 270-05 76(th) Avenue, New Hyde Park, NY 11040. Electronic address:
Nonhealing wounds are increasingly prevalent, present in 1% to 2% of the global population, with higher incidence in geriatric patients. These chronic wounds pose challenges to older adult patients owing to physiologic changes that hinder healing, common medical comorbidities that promote inflammation and damage microcirculation, poor nutritional status and mobility, and psychosocial barriers to receiving care. In this literature review, the epidemiology, pathophysiology, systems costs, and management of chronic venous leg ulcers, arterial ulcers, and diabetic foot wounds in older adult patients are investigated.
View Article and Find Full Text PDF