Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The treatment of chronic disease (CKD) is a great challenge in healthcare that requires an innovative approach to address its complex nature. RNA nanotechnology has emerged rapidly and received attention in the last few years because of its significant aptitude for therapies. Hence, the present study aimed to design, construct, and characterize a multifunctional (anti-miR-34a DNA aptamer-kidney targeted) RNA nanoparticle (RNPs) based on bacteriophage phi29 packaging RNA three-way junction (pRNA-3WJ), and then explore their in vivo toxicity and therapeutic potentials in mice model of CKD. After confirming the safety and specific targeting capability of the prepared core 3WJ (3WJ) and the therapeutic 3WJ (3WJ-Kapt/anti-miR-34a) RNPs to renal tissue using healthy mice, CKD was induced in C57BL/6 mice using adenine. CKD mice were treated with a single intravenous injection of 3WJ or 3WJ-Kapt/anti-miR-34a. Every week, 5 mice of each group were selected randomly for sample collection for 4 weeks post-treatment. The anti-miR-34a 3WJ-RNPs have shown stability, safety, and efficacy in renal targeting using DNA aptamer, by targeting miR-34a in renal tissue, 3WJ-Kapt/anti-miR-34a suppressed profibrotic gene expression and induced anti-fibrotic pathways' expression. Our present study provides preliminary and pioneering evidence for the promising treatment of renal fibrosis and CKD through targeting miR-34a in the renal tissue by 3WJ-RNPs. The CKD mice showed marked time-dependent up-regulation of the renal profibrotic pathways, including TGF-β, FGF2, and WNT/β-catenin pathways. The same mice showed suppressed renal expression of the antifibrotic pathways, including α and β Klotho, SMAD7, and SIRT1. The prepared anti-miR-34a 3WJ-RNPs have shown stability, safety, and efficacy in renal targeting using DNA aptamer. By targeting miR-34a in renal tissue, 3WJ-Kapt/anti-miR-34a suppressed profibrotic gene expression and induced anti-fibrotic pathways' expression. Our present study provides preliminary and pioneer evidence for the promising treatment of renal fibrosis and CKD through targeting miR-34a in the renal tissue by 3WJ-RNPs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12310521PMC
http://dx.doi.org/10.1038/s41434-025-00544-7DOI Listing

Publication Analysis

Top Keywords

renal tissue
20
targeting mir-34a
16
mir-34a renal
16
renal
11
treatment chronic
8
3wj 3wj-kapt/anti-mir-34a
8
ckd mice
8
anti-mir-34a 3wj-rnps
8
3wj-rnps stability
8
stability safety
8

Similar Publications

Background: Civilians in South Africa experience a high incidence of crush injury, or traumatic rhabdomyolysis. Community assault (CA) is a common mechanism of crush injury in South Africa, where victims are assaulted by multiple persons using a variety of objects. A crush injury places patients at risk of renal dysfunction.

View Article and Find Full Text PDF

Microplastic-induced hypertension in rats: A two-hit model exploring oxidative stress and gut microbiota.

NanoImpact

September 2025

Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwa

Microplastic particulates (MPs) accumulate widely in ecosystems and pose health risks to both pregnant women and their offspring. Studies have detected MPs in the kidneys and fetal tissues, but it remains unclear whether maternal MP exposure worsens postnatal MP-induced hypertension and kidney disease. This study examined male rat offspring (n = 8/group) divided into four exposure groups: control, indirect (maternal exposure to 1 mg/L MPs during gestation and lactation), direct (offspring exposure to 1 mg/L MPs from 3 to 16 weeks), and combined exposure.

View Article and Find Full Text PDF

PUM2 Lowers HDAC9 mRNA Stability to Improve Contrast-Induced Acute Kidney Injury through Attenuating Oxidative Stress and Promoting Autophagy.

Diabetes Metab J

September 2025

Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, Changsha, China.

Background: Contrast-induced acute kidney injury (CIAKI) is the third cause of hospital-acquired acute kidney injury and diabetes mellitus (DM) was identified as a risk factor for CIAKI. However, the molecular mechanism underlying DM-CIAKI remains unclear, which needs further investigation.

Methods: DM-CIAKI models of mice and cells were established.

View Article and Find Full Text PDF

The global rise in chronic kidney disease necessitates innovative solutions for end-stage renal dis-ease that can help to overcome the limitations of the only available treatment options, transplanta-tion and dialysis. Tissue engineering presents a promising alternative, leveraging decellularized scaffolds to retain the extracellular matrix (ECM). However, optimizing methods for decellularization and recellularization remains a challenge.

View Article and Find Full Text PDF

Background: Renal cell carcinoma (RCC) is a common malignant tumor with metabolic reprogramming and immune evasion features. δ-Aminolevulinic acid dehydratase (ALAD), a key enzyme in heme biosynthesis, has been implicated in cancer progression and treatment outcomes, but its role in RCC remains unclear.

Methods: This study integrated multi-omics datasets from TCGA, CPTAC, and GEO to analyze ALAD's expression, prognostic value, and functional implications in RCC.

View Article and Find Full Text PDF