Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The global rise in chronic kidney disease necessitates innovative solutions for end-stage renal dis-ease that can help to overcome the limitations of the only available treatment options, transplanta-tion and dialysis. Tissue engineering presents a promising alternative, leveraging decellularized scaffolds to retain the extracellular matrix (ECM). However, optimizing methods for decellularization and recellularization remains a challenge. Here we present novel work which builds on our previous study where we investigated several decellularization protocols. In this study we analyzed the suit-ability of decellularized scaffolds for recellularization. Precision-cut kidney slices (PCKS) were uti-lized as a model to explore the impact of different decellularization protocols on scaffold recellulari-zation. PCKS were pretreated physically followed by immersion decellularization in chemicals (CHEM-Imm). Physical pretreatments included high hydrostatic pressure (HHP-Imm) or freezing-thawing cycles (FTC-Imm). Scaffolds were recellularized, with human renal proximal tubular epithe-lial cells (RPTEC/TERT1). All scaffolds showed cell growth over the 7-day incubation period. Nota-bly, FTC-Imm demonstrated the highest expression of the tight junction protein zonula-occludens-1 (ZO-1). Moreover, as the native kidney is composed of up to 30 different cell types, we utilized arti-ficial neural networks (ANN) to investigate the distribution and attachment patterns of RPT-EC/TERT1 cells to determine if decellularized scaffolds retain cell specific attachment sites. It was revealed that, at least 97% of RPTEC/TERT1 cells were attached outside the Bowman capsules, potentially showing a clear tendency to attach to their original tubular sites. This suggests that the ECM retains instructive cues guiding the migration and attachment of the cells. Overall, our scoring system identified FTC-Imm as the most effective method.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1748-605X/ae05a4DOI Listing

Publication Analysis

Top Keywords

decellularized scaffolds
12
precision-cut kidney
8
kidney slices
8
scaffolds retain
8
decellularization protocols
8
scaffolds
5
recellularization scaffolds
4
scaffolds derived
4
derived precision-cut
4
kidney
4

Similar Publications

Human Dental Pulp Stem Cells (hDPSCs) represent a remarkable cell source for tissue engineering and regenerative medicine, offering significant potential for use in personalized medicine and autologous therapies. Decellularized extracellular matrix (ECM)-derived biological scaffolds show excellent properties for supporting cell delivery and growth in both in vitro and in vivo applications. These scaffolds provide essential biochemical cues that regulate cellular functions and offer a more accurate representation of the in vivo environment.

View Article and Find Full Text PDF

The global rise in chronic kidney disease necessitates innovative solutions for end-stage renal dis-ease that can help to overcome the limitations of the only available treatment options, transplanta-tion and dialysis. Tissue engineering presents a promising alternative, leveraging decellularized scaffolds to retain the extracellular matrix (ECM). However, optimizing methods for decellularization and recellularization remains a challenge.

View Article and Find Full Text PDF

Defective wounds pose health risks, and treatment is challenging. Umbilical cord-derived mesenchymal stem cells (UCMSCs) show promise for healing. Primary UCMSCs were isolated and extracted in vitro, and the proliferation and differentiation characteristics were detected by flow cytometry and trilineage differentiation, and a 3D spherical cell culture was performed.

View Article and Find Full Text PDF

In the current in vitro experiment, we fabricated and characterized placenta/platelet-rich plasma (PL/Pt) composite scaffolds and evaluated their effect on differentiating adipose stem cells (ASCs) into insulin-producing cells (IPCs) in vitro. The human placenta (PL) was decellularized (dPL), characterized, and digested in pepsin. PRP was extracted using a two-step centrifugation process and then freeze-dried.

View Article and Find Full Text PDF

Ultrasound Imaging and Machine Learning for Nondestructive Sensing in Bioreactors.

ACS Omega

September 2025

Department of Engineering, Boston College, 245 Beacon Street, Chestnut Hill, Massachusetts 02446, United States.

The advancement of cell therapy and cellular agriculture underscores the need for noninvasive, cost-effective methods for continuous monitoring of large-scale cell production. Bioreactors, designed to mimic physiological conditions to facilitate cell growth, require reliable quality control measures. This study investigates the potential of ultrasound technology to characterize cellular growth and decellularization in spinach scaffolds.

View Article and Find Full Text PDF