A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Anti-CTGF/PD-1 bispecific antibody Y126S restrains desmoplastic and immunosuppressive microenvironment in pancreatic cancer. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Pancreatic ductal adenocarcinoma (PDAC) is characterized by a desmoplastic and immunosuppressive tumor microenvironment (TME), limiting the efficacy of immune checkpoint inhibitors such as anti-programmed cell death 1 (PD-1).

Methods: This study aimed to evaluate the therapeutic potential of Y126S, a recombinant IgG1/IgG2 hybrid bispecific antibody (BsAb), in reshaping the immunotherapy-resistant TME in PDAC. Orthotopic PDAC and KPC (Kras; Trp53; Pdx1-Cre) mouse models were established and treated with Y126S, α-connective tissue growth factor (CTGF), α-PD-1, or a combination of α-CTGF and α-PD-1. TME remodeling, antibody distribution, and therapeutic efficacy were assessed using flow cytometry, immunohistochemical/Masson staining, atomic force microscopy, positron emission tomography (PET) imaging, distribution analysis, and other experimental techniques.

Results: Here, Y126S was characterized and its antitumor efficacy was evaluated and validated in orthotopic PDAC mice and KPC mouse models. Notably, Y126S significantly remodeled the TME and demonstrated superior tumor-specific accumulation compared with single α-PD-1 treatment, leading to markedly enhanced antitumor efficacy relative to its parental antibodies or their combination. Mechanistically, Y126S suppressed cancer-associated fibroblasts (CAFs) activation, reduced collagen deposition, and downregulated programmed cell death ligand 1 (PD-L1) expression on CAFs by targeting CTGF and enhanced the anti-PD-1-mediated reinvigoration of cytotoxic CD8 T cells, thereby establishing a less desmoplastic and potent tumor-killing microenvironment.

Conclusions: Our findings highlight the potential of Y126S as a promising BsAb-based immunotherapy strategy for PDAC by remodeling the desmoplastic and immunosuppressive TME.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12314827PMC
http://dx.doi.org/10.1136/jitc-2025-012144DOI Listing

Publication Analysis

Top Keywords

desmoplastic immunosuppressive
12
bispecific antibody
8
cell death
8
potential y126s
8
orthotopic pdac
8
mouse models
8
antitumor efficacy
8
y126s
7
pdac
5
tme
5

Similar Publications