98%
921
2 minutes
20
Mixed-halide perovskite nanowires have broad applications in optoelectronics due to their excellent charge transport properties and high mobility. However, traditional preparation methods face challenges in achieving compositional uniformity and structural stability. In this study, we employ a two-step method combining nanoimprinting and liquid-phase anion exchange to fabricate mixed-halide nanowires. The photodetector based on CsCuICl nanowires (NWs) exhibits a responsivity of 36.8 mA/W, a high polarization sensitivity of I/I = 1.53, and excellent mechanical stability. Finally, encrypted optical communication is realized by integrating encryption algorithms with a dual-beam irradiation mode. This work demonstrates the successful fabrication of mixed-halide nanowires via the two-step method and explores their potential for other optoelectronic applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.563102 | DOI Listing |
J Am Chem Soc
September 2025
Institute of Chemistry of OrganoMetallic Compounds (ICCOM), National Research Council of Italy (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy.
Mixed-halide perovskites of formula MAPb(BrI), where MA is methylammonium, are of great interest for optoelectronic applications (particularly high-efficiency solar cells) due to their finely tunable bandgap, which enables precise control over light absorption. However, their stability remains a critical challenge, notably due to reversible photoinduced halide segregation. Under continuous illumination, this process leads to the formation of Br- and I-rich domains, which lower device performance by introducing low-bandgap regions that trap charge carriers.
View Article and Find Full Text PDFDigit Discov
August 2025
École Polytechnique Fédérale de Lausanne (EPFL), Institute of Electrical and Microengineering (IEM), Photovoltaics and Thin-Film Electronics Laboratory (PV-Lab) Rue de la Maladière 71b Neuchâtel 2000 Switzerland
The fine-tuning of halide perovskite materials for both performance and stability calls for innovative tools that streamline high-throughput experimentation. Here, we present two complementary systems designed to accelerate the development of solution-processed thin-film semiconductors. HITSTA (High-Throughput Stability Testing Apparatus) is a robust, cost-effective platform for optical characterization and accelerated aging, built around a repurposed 3D printer.
View Article and Find Full Text PDFNat Commun
August 2025
Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, PR China.
The unprecedented growth in information across diverse media drives an urgent need for multifunctional materials and devices beyond conventional electrical paradigms. This work explores all-optical information processing based on photoluminescence functions using smart phosphor. The developed composite phosphor of mixed-halide perovskite embedded macroporous YO:Eu exhibits adaptive photoluminescence variations with neuromorphic characteristics.
View Article and Find Full Text PDFLangmuir
August 2025
School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing 211816, China.
Mixed halide perovskite CsPbBrI nanocrystal (NC) films exhibit viable application prospects in pure red perovskite light-emitting diodes (PeLEDs). However, intrinsic environmental instability, defects, and spectral instabilities are always present in pure red perovskites under mixing halide ion exchange processing. In this work, we developed a swelling method for the preparation of stable pure red light emission Zn: CsPbBrI-PVDF films by post-treatment with CsBr-ZnI at room temperature.
View Article and Find Full Text PDFAdv Mater
August 2025
Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
Atomic-resolution imaging of Ruddlesden-Popper (RP) interfaces is challenging due to their concealment within perovskite nanocrystals (NCs) and the inherent limitations of conventional characterization techniques. In this study, distinctly oriented RP faults have been detected using double-Cs-corrected high-angle annular dark-field scanning transmission electron microscopy (STEM). A simple yet reliable STEM approach to achieve atomically precise identification of Pb, Cs, Br, and I atoms and analyze their spatial atomic arrangements in a single NC is employed.
View Article and Find Full Text PDF