98%
921
2 minutes
20
Identification and quantitative analysis of nanoplastics (NPs) in the environment are extremely challenging. Surface-enhanced Raman scattering (SERS) is a promising technique, but conventional solid SERS substrate-based detection faces difficulties such as ensuring NPs make contact with hotspots, dealing with uneven particle distribution, and poor detection repeatability. Herein, we propose a simple and sensitive SERS detection strategy by co-self-assembling silver (Ag) nanoparticles and NPs in a monolayer. 90% of NPs in solution spontaneously transfer to the monolayer within 30 s. More importantly, a single NP can be uniformly entrapped in Ag nanoparticle SERS "hotspots", resulting in a significant enhancement of the intrinsic Raman signal. This enhancement enables quantitative detection in the range of 10-2 mg/L for 80, 300, and 800 nm polystyrene (PS) NPs, with a low detection limit of 10 mg/L. The method allows for the identification of various plastic types, including PS, poly(methyl methacrylate) (PMMA), polyethylene terephthalate (PET), and polyformaldehyde (POM). This method was used to determine the efficacy of NP generation from bulk PS foam through physical (sand friction) and biological (mealworm ingestion) routes. Moreover, NPs in real seawater collected from a rocky beach were quantitatively analyzed. The coassembly monolayer-based SERS detection provides a straightforward and sensitive technique for identification and quantitative analysis of NPs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.5c03571 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China.
Integrating surface-enhanced fluorescence (SEF) and surface-enhanced Raman spectroscopy (SERS) into a single probe is a natural step forward for plasmon-enhanced spectroscopy (PES), as SEF enables enhanced fluorescent imaging for fast screening of targets, while SERS allows ultrasensitive trace molecular characterization with specificity. However, many challenges remain, e.g.
View Article and Find Full Text PDFNanoscale Adv
September 2025
State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences Beijing 100193 China
Mycotoxins in feed can pose significant risks to the health of livestock and poultry, leading to reduced economic returns and impaired production efficiency, thereby impeding the sustainable development of the livestock industry. Consequently, the exploration of highly sensitive, simple and rapid detection methods for trace mycotoxins in feed is crucial for ensuring feed safety and promoting industrial sustainability. Surface-enhanced Raman spectroscopy (SERS), a rapid detection method characterized by high sensitivity, ease of operation, and resistance to water interference, has gained substantial traction in mycotoxin detection within feed matrices in recent years.
View Article and Find Full Text PDFACS Omega
September 2025
Mads Clausen Institute, NanoSYD, University of Southern Denmark (SDU), Alsion 2, 6400 Sønderborg, Denmark.
Detection of micro- and nanoplastic particles at extremely low concentrations in complex matrices is a critical goal in environmental science and regulatory frameworks. Surface-enhanced Raman spectroscopy (SERS) offers unique advantages for detecting molecular species in such mixtures, relying solely on their characteristic fingerprints. However, its application for plastic particles has been constrained due to weak analyte-substrate interactions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China.
Exhaled breath analysis offers noninvasive, early lung cancer detection via volatile organic compound (VOC) biomarkers, surpassing blood-based methods. Surface-enhanced Raman spectroscopy (SERS) is ideal for this purpose, combining molecular fingerprint specificity with single-molecule sensitivity. However, conventional SERS substrates face a fundamental limitation: while porous materials such as metal-organic frameworks effectively adsorb VOCs through their subnanometer pores (0.
View Article and Find Full Text PDFBiosens Bioelectron
August 2025
State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Heilongjiang, 150081, China; Research Unit of Health Sciences and Technology (HST), Faculty of Medicine University of Oulu, Finland; Heilongjiang Eye Hospital, Harbin, 150001, China
SERS has revolutionized viral detection with its high sensitivity and specificity. This review comprehensively explores the application progress, challenges, and future directions of SERS in viral detection. Firstly, the fundamental principles of SERS are introduced.
View Article and Find Full Text PDF