Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Rabbit meat constitutes a high-protein, low-fat nutritional resource demonstrating rising consumption, particularly within the Asia-Pacific region. Consequently, muscle growth and developmental pattern in meat rabbits represent critical economic considerations. To elucidate the primary signaling pathways governing muscle development, we first performed comparative body weight analyses between two rabbit breeds exhibiting divergent growth rates: the fast-growing Checkered Giant (Ju) and slow-growing Sichuan Ma rabbit. Subsequent, post-natal qualities of thigh and muscle fiber were quantified across three developmental phases (28, 56, and 84 days post-natal). The results showed the body weight of Ju rabbit was significantly higher than that of Ma rabbit beyond 3 weeks post-natal ( < 0.05), while Ma rabbit exhibited larger muscle fiber areas in both tissues at 56 days ( < 0.05). The transcriptome analysis showed that 284 and 305 differentially expressed genes (DEGs) (|log2FC| > 1, padj < 0.05) were identified in thigh muscle and muscle, respectively. GO (Gene Ontology) analysis of DEGs indicated DEGs in the thigh muscle were enriched in these terms related to biological processes of muscle cell migration and smooth muscle cell migration, cellular components of sarcomere, myofibril, and actin filament bundle, while DEGs in muscle were enriched in these terms associated with biological processes of muscle cell migration, smooth muscle cell migration and muscle structure development, cellular component of actin cytoskeleton, contractile fiber, myofibril, myosin complex and molecular function of actin filament binding. Integrated GO, KEGG and PPI analyses of co-expressive DEGs implicated the HIF-1 signaling pathway and Glycolysis/Gluconeogenesis in muscular development. Different expression of energy metabolism hub-genes might be the primary reason for interbreed muscle developmental disparities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12153524PMC
http://dx.doi.org/10.3390/ani15111585DOI Listing

Publication Analysis

Top Keywords

muscle cell
16
cell migration
16
muscle
15
thigh muscle
12
muscle development
8
body weight
8
muscle fiber
8
muscle enriched
8
enriched terms
8
biological processes
8

Similar Publications

Background: Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipid-laden foam cells and plaques within the arterial wall. Dysfunctional vascular smooth muscle cells (VSMCs), fibroblasts, endothelial cells, and macrophages contribute to disease progression. Here, we report that macrophage-specific expression of epsins, highly conserved endocytic adaptor proteins involved in clathrin-mediated endocytosis, accelerates atherosclerosis in Western diet-fed mice.

View Article and Find Full Text PDF

An abdominal aortic aneurysm (AAA) is defined as a localized dilation of the abdominal aorta measuring at least 1.5 times its normal diameter. If left untreated, AAA can progress to a life-threatening condition.

View Article and Find Full Text PDF

Modeling Uterine Fibroids Using Bioengineered Hydrogels.

ACS Biomater Sci Eng

September 2025

Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States.

Uterine fibroids are the most common gynecological tumors, characterized by excessive production of extracellular matrix. Despite their prevalence, the cellular mechanisms governing fibroid growth remain poorly understood. Current in vitro models for fibroids do not replicate the complex 3D tissue mechanics, structure, and extracellular matrix components of fibroids, which may limit our understanding of fibroid pathogenesis.

View Article and Find Full Text PDF

The Effect of Cachexia on the Feeding Regulation of Skeletal Muscle Protein Synthesis in Tumour-Bearing Mice.

J Cachexia Sarcopenia Muscle

September 2025

Integrative Muscle Biology Laboratory, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee, USA.

Background: Cancer promotes muscle wasting through an imbalance in the tightly regulated protein synthesis and degradation processes. An array of intracellular signalling pathways, including mTORC1 and AMPK, regulate protein synthesis, and these pathways are responsive to the muscle's microenvironment and systemic stimuli. Although feeding and fasting are established systemic regulators of muscle mTORC1 and protein synthesis, the cancer environment's impact on these responses during cachexia development is poorly understood.

View Article and Find Full Text PDF

Loss of Skeletal Muscle Mass Is Associated With Reduced Cytotoxic T Cell Abundance and Poor Survival in Advanced Lung Cancer.

J Cachexia Sarcopenia Muscle

October 2025

Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands.

Background: Body composition alterations such as skeletal muscle (SM) loss in cancer patients are associated with poor survival. In turn, immune cell-driven pathways have been linked to muscle wasting. We aimed to investigate the relationship between body composition, tumour-infiltrating lymphocytes and survival in patients with advanced lung cancer.

View Article and Find Full Text PDF