Conductivity of Filled Diblock Copolymer Systems: Identifying the Main Influencing Factors.

Polymers (Basel)

Institute of Theoretical Physics, University of Münster, 48149 Münster, Germany.

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

By developing and making use of the multi-scale theoretical approach, we identify the main factors that affect the conductivity of a composite composed of a diblock copolymer (DBC) system and conductive particles. This approach relies on the consistent phase-field model of DBC, Monte-Carlo simulations of the filler localization in DBC, and the resistor network model that mimics the conductive filler network formed in DBC. Based on the described approach, we thoroughly explore the relation among the morphological state of the microphase-separated DBC, localization of fillers in DBC, and the electrical response of the composite. Good agreement with experimental results confirms the accuracy of our theoretical predictions regarding the localization of fillers in the DBC microphases. The main factors affecting the composite conductivity are found to be: (i) affinities of fillers for copolymer blocks; (ii) degree of the segregation of a host DBC system, driven by external stimuli; (iii) geometry of the microphases formed in the microphase-separated DBC; and (iv) interactions between fillers. The conductor-insulator transition in the filler network is found to be caused by the order-disorder transition in the symmetric DBC. The order-order transition between the ordered lamellae and cylindrical microphases of asymmetric DBC causes a spike in the composite conductivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12158064PMC
http://dx.doi.org/10.3390/polym17111502DOI Listing

Publication Analysis

Top Keywords

dbc
11
diblock copolymer
8
main factors
8
dbc system
8
filler network
8
microphase-separated dbc
8
localization fillers
8
fillers dbc
8
composite conductivity
8
conductivity
4

Similar Publications

Effects of ethanolic extracts of Akhuni, an ethnic food of Northeast India, on glucose tolerance, lipid profile and antihyperglycemic activities and its pharmacokinetic studies.

Food Res Int

November 2025

Centre for Pre-clinical Studies, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam 785006, India; AcSIR-Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India. Electronic address:

This is the first report on the functional potential of Akhuni, an ethnic food of Northeast India, against diabetes. Akhuni is a traditional fermented soybean product known for its umami taste and delicacy, commonly used in the cuisine of Northeast India. Treatment with ethanolic extract of Akhuni (AKET) for 8 weeks decreased glucose levels in the blood, increased body mass and enhanced the ability to tolerate glucose dose-dependently in the streptozotocin-induced diabetic mice in comparison with the group of diabetic control mice (DBC).

View Article and Find Full Text PDF

Design of Cu/Zr Alloy Interface for Enhanced Thermal Fatigue Performance in Electronic Packaging.

ACS Omega

September 2025

Materials and Manufacturing Directorate, AFRL/RXEE, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States.

This study addresses a critical limitation in direct bonded copper (DBC) materials used in power electronics by introducing a copper-zirconium (Cu/Zr) alloy interposing layer at the copper-ceramic interface. This novel design aims to mitigate mechanical stress induced by mismatched material properties, such as the coefficient of thermal expansion (CTE) and elastic modulus, during thermal cycling. The key findings of this study are (1) thermal fatigue improvement: Test samples with the Cu/Zr interface layer (Cu-Cu/Zr-AlN) three times enhanced thermal fatigue resistance, surviving 30 thermal cycles from -55 to 300 °C before delamination, while standard DBC substrates without the Cu/Zr layer failed after just 10 cycles, indicating a performance improvement with the Cu/Zr alloy, (2) durability projections: Based on the Coffin-Manson model, if the upper temperature is capped at 150 °C, the Cu-Cu/Zr-AlN substrates are projected to survive approximately 1372 cycles, underscoring their potential for long-term reliability, and (3) stress mitigation: The Cu/Zr alloy layer bridges the CTE disparity between copper and ceramic, reducing mechanical stress and improving structural integrity across a broad temperature range (-55 to 300 °C).

View Article and Find Full Text PDF

A systematic purification process for His-tagged enhanced green fluorescent protein (His-EGFP) from recombinant E. coli was developed using immobilized metal affinity chromatography (IMAC) in a packed bed format. Large-scale fermentation was conducted in a 5 L bioreactor, followed by cell harvesting and sonication-based disruption at 20 kHz and 4 °C.

View Article and Find Full Text PDF

The photocatalytic efficiency of two-dimensional covalent organic frameworks (2D COFs) is governed by the spatial arrangement of donor-acceptor (D-A) moieties, which strongly influences exciton transport. However, precise control over D-A alignment, especially across intra- and interlayer dimensions, remains a key challenge for optimizing singlet oxygen (O) generation. Here, we present a linker geometry-directed approach to modulate D-A organization within perylene diimide (PDI)-based COFs.

View Article and Find Full Text PDF

The tracking control problem for strict-feedback systems with unknown dynamics has been extensively studied. However, most existing control approaches require online approximation models and associated a priori assumptions. In order to avoid the necessity of deriving online models, this article proposes a data-driven backstepping control (DBC) approach for a class of strict-feedback systems with unknown dynamics.

View Article and Find Full Text PDF