98%
921
2 minutes
20
Dunn is rich in flavonoids, which were previously demonstrated to respond to changing light conditions. In this study, through weighted gene co-expression network analysis (WGCNA), genes were screened as the potential regulator for these light-intensity-induced changes. One gene, , was chosen for in-depth research. Analysis showed that was an R2R3-type MYB transcription factor, regulated by light, and involved in controlling the light responses of . was then transiently overexpressed in flowers and stably overexpressed in Domin. overexpression promoted flavonoids (especially catechins) accumulation, and affected expressions of all the flavonoid biosynthetic pathway genes. In transient overexpression, was the only significantly decreased gene, while other 17 genes were significantly increased. In stable overexpression, nearly all genes were upregulated or at least unchanged. overexpression also might function in inhibiting anthocyanin and lignin biosynthesis. This study deepens our understanding of gene functions in regulating and enhancing flavonoids, and would be beneficial for designing high-valued in future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12155114 | PMC |
http://dx.doi.org/10.3390/ijms26115292 | DOI Listing |
Sci Adv
September 2025
Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
Grain size substantially influences rice quality and yield. In this study, we identified (), a quantitative trait locus encoding an F-box protein that enhances grain length by promoting cell proliferation. The transcription factor OsbZIP35 represses expression, while COR1 interacts with OsTCP19, leading to its degradation.
View Article and Find Full Text PDFSci Adv
September 2025
Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China.
Regulatory T cells are essential for immune homeostasis. While CD4 T cells are well characterized, CD8 T cells remain less understood and are primarily observed in pathological or experimental contexts. Here, we identify a naturally occurring CD8 regulatory precursor T cell at the steady state, defined by a CD8HLA-DRCD27 phenotype and a transcriptome resembling CD4 T cells.
View Article and Find Full Text PDFSci Transl Med
September 2025
Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
IFN-β, a type I interferon, has been used as a first-line therapy for patients with multiple sclerosis (MS) for more than 30 years; however, the cellular and molecular basis of its therapeutic efficacy remains unclear. Here, we first used experimental autoimmune encephalomyelitis (EAE), a mouse model for MS, to show that the therapeutic effects of IFN-β were associated with a down-regulation of microRNA-21 (miR-21) and pathogenic T17 (pT17) cells. In vitro experiments demonstrated that genetic knockout of miR-21 directly inhibited pathogenic T17 cell differentiation.
View Article and Find Full Text PDFPhotobiomodul Photomed Laser Surg
September 2025
Department of Oral and Maxillofacial Diagnostic Sciences, Dental College and Hospital, Taibah University, Medina, Saudi Arabia.
Photobiomodulation (PBM) therapy involves the use of low-dose, nonionizing light to reduce pain and inflammation, promote wound healing, and enhance tissue regeneration. PBM-based therapy of various dental conditions is associated with improved treatment outcomes. This study aims to critically review the literature to highlight the underlying molecular biological mechanisms and clinical applications of PBM in modern dental practice.
View Article and Find Full Text PDFElife
September 2025
Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt am Main, Germany.
The p53 transcription factor family consists of the three members p53, p63, and p73. Both p63 and p73 exist in different isoforms that are well characterized. Isoforms have also been identified for p53 and it has been proposed that they are responsible for increased cancer metastasis.
View Article and Find Full Text PDF