Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Small cell lung cancer (SCLC) remains a challenge prognostically. A clinically silent early stage and predilection for early metastasis leads to over half of patients presenting with metastatic disease at the time of diagnosis. Akin to many other cancers, once SCLC metastasizes, current therapies begin to lose their effectiveness. The future of SCLC rests in innovative treatments aimed at improving patient outcomes. Chemotherapy and radiation remain the backbone treatment for SCLC. Most patients diagnosed with SCLC begin treatment with combination chemotherapy consisting of a platinum analog and topoisomerase inhibitor with or without concurrent radiation. Disease progression or recurrence warrants new treatment approaches. New chemotherapy combinations and advances in radiation precision offer patients novel approaches using the same backbone of treatment used in many other cancers. The introduction of newer therapeutic approaches, such as immune checkpoint inhibitors, small molecule targeted therapies, bispecific antibodies, and antibody-drug conjugates offer a bright future for patients with SCLC who fail first-line therapy. This review will focus on advancing treatment paradigms for SCLC in the era of precision medicine. Such a study might be helpful for pulmonologists and oncologists to manage precisely patients with SCLC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12153792PMC
http://dx.doi.org/10.3390/cancers17111847DOI Listing

Publication Analysis

Top Keywords

era precision
8
precision medicine
8
advancing treatment
8
treatment paradigms
8
small cell
8
cell lung
8
lung cancer
8
sclc
8
backbone treatment
8
patients sclc
8

Similar Publications

Just as Gregor Mendel's laws of inheritance laid the foundation for modern genetics, the emergence of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas systems has catalyzed a new era in precision genome engineering. CRISPR/Cas has revolutionized rice ( L.) breeding by enabling precise, transgene-free edits to improve yield, nutrition, and stress tolerance.

View Article and Find Full Text PDF

Single-cell analysis provides critical insights into cellular heterogeneity, dynamic behaviours and microenvironmental interactions, driving advancements in precision medicine and disease mechanism research. However, traditional technologies face limitations due to low throughput, insufficient sensitivity and bottlenecks in multi-omics integration. Microdroplet printing technology, with its advantages in high-throughput single-cell encapsulation, picolitre-level reaction precision and oil-free phase contamination avoidance, has propelled single-cell analysis into a new era of high-throughput and high-dimensional resolution through deep integration with multimodal detection platforms.

View Article and Find Full Text PDF

Advances in Gene Therapy Clinical Trials for Hemophilia Care.

Curr Gene Ther

September 2025

Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.

Gene therapy has revolutionized the therapeutic landscape for hemophilia A and B, offering the prospect for persistent endogenous production of coagulation factors VIII and IX. Recent advances in adeno-associated virus (AAV)-mediated gene transfer, particularly the approvals of valoctocogene roxaparvovec (Roctavian) and etranacogene dezaparvovec (Hemgenix), mark significant milestones in hemophilia care. This mini-review synthesizes emerging clinical data from phase I-III trials published between 2022 and 2025, emphasizing efficacy, durability, and immunogenicity profiles of leading AAV-based therapies.

View Article and Find Full Text PDF

Genetic modifiers of epilepsy: A narrative review.

Mol Cell Neurosci

September 2025

Department of Personalized & Molecular Medicine, Era University, Lucknow, India.

Epilepsy is a neurological disorder that shows strong genetic control on the timing and onset of symptoms and drug response variability. Some epilepsy syndromes have clear monogenic mutations but genes with control on the phenotype and severity of the disorder and drug sensitivity are present in the whole genetic profile. Genetic modifiers are not the cause of epilepsy but control significant networks such as synaptic plasticity and ion channels and neurodevelopment and neuroinflammation and therefore the reason why two individuals with the same primary mutations have different clinical courses.

View Article and Find Full Text PDF

Multiomics approach to evaluating personalized biomarkers of allergen immunotherapy.

J Allergy Clin Immunol

September 2025

National Heart and Lung Institute, Imperial College London, London, United Kingdom; Frankland and Kay Allergy Centre, UK NIHR Imperial Biomedical Research Centre, United Kingdom.

Recent advancements in genomics and "omic" technologies have ushered in a transformative era referred to as personalized or precision medicine. This innovative approach considers the unique genetic profiles of individuals, along with a range of variability factors, to devise tailored disease treatments and prevention strategies that cater to the distinct needs of each patient. Although the terms personalized medicine and precision medicine are frequently utilized interchangeably, it is essential to delineate the subtle distinctions between them.

View Article and Find Full Text PDF