98%
921
2 minutes
20
The development of effective cholinesterase inhibitors remains a critical strategy in the search for novel therapeutics for Alzheimer's disease (AD). In this work, a series of novel 3-substituted pyrazino[1,2-a]indol-1(2H)-one derivatives were rationally designed, synthesized, and fully characterized through comprehensive spectral analyses. The cholinesterase inhibitory activities of the compounds were systematically evaluated, demonstrating potent inhibition against both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) at nanomolar concentrations. Notably, compound 16g emerged as the most promising candidate, exhibiting 14.28-fold and 9.7-fold greater potency against AChE compared to tacrine and donepezil, respectively, and 3.39-fold and 2.3-fold higher activity against BChE. Molecular docking studies elucidated key binding interactions within the active sites of the enzymes, supporting the observed biological activities and providing mechanistic insights. Furthermore, in silico drug-likeness and pre-ADMET profiling confirmed the favorable predicted pharmacokinetic properties of compound 16g, underscoring its potential as a lead compound. These findings collectively highlight the pyrazino[1,2-a]indol-1(2H)-one core as a promising structural framework for developing next-generation cholinesterase inhibitors aimed at combating AD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.abb.2025.110504 | DOI Listing |
ACS Omega
September 2025
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
Ten novel pyrazoline-thiazole derivatives were synthesized and assessed for their potential as acetylcholinesterase and butyrylcholinesterase inhibitors. The structure of the target compounds was characterized by H NMR and C NMR, and purity was determined using HPLC. The in vitro enzyme inhibitory activity assays determined that compounds (IC = 0.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricu
Chlorpyrifos (CPF), a widely used organophosphate insecticide in cotton cultivation for controlling Aphis gossypii, has Binodoxys communis as the primary parasitic natural enemy of A. gossypii. This study evaluated the impact of two sub-lethal CPF concentrations (LC10 and LC30) on key biological parameters across two generations, transcriptomic responses, and symbiotic bacterial communities in B.
View Article and Find Full Text PDFChem Biol Interact
September 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
Environmental contaminants, such as pesticides, can inhibit the enzymatic activity of acetylcholinesterase (AChE), an enzyme necessary for neurotransmission. The inhibitory effects of structurally diverse pesticides on AChE may result from either reversible or covalent interactions. Therefore, assessing their potency typically requires different assay design to determine either dissociation constants or rate constants, respectively.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan.
Alzheimer's disease (AD) is a neurodegenerative disorder categorized by the progressive loss of cognitive function, with acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) as key therapeutic targets. In this study, we report the isolation, characterization, and evaluation of the cholinesterase inhibitory potential of phytochemicals from Fernandoa adenophylla (Wall. ex G.
View Article and Find Full Text PDFRev Sci Instrum
September 2025
Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai 600036, India.
Pesticides are often used in agriculture to reduce post-harvest losses due to contamination and to increase productivity. Long-term exposure to these pesticides in food leads to serious health issues in humans and animals. Advanced sensing techniques are crucial for detecting pesticide traces in agricultural products present in low amounts.
View Article and Find Full Text PDF