Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

PM oxidative potential (OP), a key driver of health risks, was investigated in Ningbo, China, using dual dithiothreitol (DTT) and ascorbic acid (AA) assays combined with machine learning (ML). This approach accounts for the complexity of interactions among key chemical drivers and accurately identifies chemical species and PM sources associated with OP - a critical gap in prior studies relying solely on correlation analysis and linear regression. Year-long PM samples revealed higher nighttime and summer OP (volume-based OP-DTTv and OP-AAv), linked to aerosol acidity and photochemical aging. Among six ML models, Extremely Randomized Trees (ERT) outperformed others by 9.5-30.7 %, identifying Cu, Fe, V, As, Co, Cd, NO, Ni, and quinones as primary OP drivers, with synergistic effects for most constituents except antagonistic Fe. Source apportionment attributed OP mainly to vehicular emissions (40 %), marine/sea salt (20 %), and secondary aerosols (16 %). Biomass burning, industry, and road dust contributed minimally. Results emphasize targeting quinones, traffic-related metals (Cu, V), and synergistic metal interactions to mitigate PM toxicity in coastal cities. The dual-assay ML framework provides actionable insights for prioritizing OP-driven regulation, particularly in regions blending anthropogenic and marine influences, to reduce oxidative stress-related health burdens.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2025.138877DOI Listing

Publication Analysis

Top Keywords

oxidative potential
8
ningbo china
8
health risks
8
machine learning
8
decoding oxidative
4
potential ningbo
4
china key
4
key chemicals
4
chemicals sources
4
sources health
4

Similar Publications

A novel aggregation-induced emission (AIE) system with superior performance was successfully developed through local chemical modification from thiophene to thiophene sulfone. This approach, leveraging easily accessible tetraphenylthiophene precursors, dramatically enhances the photophysical properties in a simple oxidation step. Notably, the representative 2,3,4,5-tetraphenylthiophene sulfone (3c) demonstrates remarkable solid-state emission characteristics with a fluorescence quantum yield of 72% and an AIE factor of 240, substantially outperforming its thiophene analog.

View Article and Find Full Text PDF

Heart failure (HF) is a multifactorial and pathophysiological complex syndrome, involving not only neurohormonal activation but also oxidative stress, chronic low-grade inflammation, and metabolic derangements. Central to the cellular defence against oxidative damage is nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor that orchestrates antioxidant and cytoprotective responses. Preclinical in vitro and in vivo studies reveal that Nrf2 signalling is consistently impaired in HF, contributing to the progression of myocardial dysfunction.

View Article and Find Full Text PDF

Background: Free radicals play a key role in spinal cord injury and curcumin has the potential to act as an antioxidant agent. Controlled delivery of curcumin can be achieved through encapsulation in bovine serum albumin to form nanoparticles, and acellular scaffold can bridge lesions and improve axonal growth in spinal cord injury.

Objective: In this study, we evaluated the antioxidant effects of the scaffold containing curcumin nanoparticles in the unilateral spinal cord injury model in male rats.

View Article and Find Full Text PDF

Silkworms are emerging as a sustainable food source to address global food security, with their proteins recognized for nutritional and medicinal benefits. However, the impact of silkworm oil on immunological and pharmacological effects remains unexplored. This study explores the effects of the muga (Antheraea assamensis Helfer) silkworm pupal oil fraction (MP) on palmitic acid (PA) induced hepatic steatosis, inflammation, and oxidative stress.

View Article and Find Full Text PDF

Objectives: Acute lung injury (ALI) is an acute respiratory failure syndrome characterized by impaired gas exchange. Due to the lack of effective targeted drugs, it is associated with high mortality and poor prognosis. (TW) has demonstrated anti-inflammatory activity in the treatment of various diseases.

View Article and Find Full Text PDF