Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Most natural proteins alternate between distinct conformational states, each associated with specific functions. Intentional manipulation of conformational equilibria could lead to improved or altered protein properties. Here we develop Conformational Biasing (CB), a rapid and streamlined computational method that utilizes contrastive scoring by inverse folding models to predict variants biased towards desired conformational states. We validated CB across seven diverse deep mutational scanning datasets, successfully predicting variants of K-Ras, SARS-CoV-2 spike, β2 adrenergic receptor, and Src kinase with improved conformation-specific functions including enhanced effector binding or enzymatic activity. Furthermore, applying CB to lipoic acid ligase, a conformation-switching bacterial enzyme that has been used for the development of protein labeling technologies, revealed a previously unknown mechanism for conformational gating of sequence-specificity. Variants biased toward the "open" conformation were highly promiscuous, while "closed" conformation-biased variants were even more specific than wild-type, enhancing the utility of LplA for site-specific protein labeling with fluorophores in living cells. The speed, simplicity, and versatility of CB (available at: https://github.com/alicetinglab/ConformationalBiasing/) suggest that it may be broadly applicable for understanding and engineering protein conformational dynamics, with implications for basic research, biotechnology, and medicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12157495PMC
http://dx.doi.org/10.1101/2025.05.03.652001DOI Listing

Publication Analysis

Top Keywords

conformational states
8
variants biased
8
protein labeling
8
conformational
6
protein
5
computational design
4
design conformation-biasing
4
conformation-biasing mutations
4
mutations alter
4
alter protein
4

Similar Publications

The estrogen receptor (ER or ERα) remains the primary therapeutic target for luminal breast cancer, with current treatments centered on competitive antagonists, receptor down-regulators, and aromatase inhibitors. Despite these options, resistance frequently emerges, highlighting the need for alternative targeting strategies. We discovered a novel mechanism of ER inhibition that targets the previously unexplored interface between the DNA-binding domain (DBD) and ligand-binding domain (LBD) of the receptor.

View Article and Find Full Text PDF

Nucleic acid aptamers are artificial recognition elements with great potential in biotechnology. For their effective integration into nanodevices, rational strategies for optimizing aptamer affinity and regulating activity are essential. Artificial nucleotide analogs offer versatile tools for both fundamental and applied research in the aptamer field.

View Article and Find Full Text PDF

Developing artificial hosts with temperature-driven conformational switching behaviors facilitates our understanding of the temperature-dependent allostery and adaptation mechanisms in natural recognition systems. Herein, we report the design and synthesis of three pairs of water-soluble, enantiomeric binaphthalene-based tetraimidazolium macrocycles (SS/RR-1•4Cl- - SS/RR-3•4Cl-) as artificial hosts for exploring sequence-selective recognition of dinucleotides in aqueous media. Owing to the reversible rotational conformation of axially chiral binaphthyl units, SS-1•4Cl- demonstrates the conformational switching, converting from cis-conformation (SS-1) to trans-conformation (SS-1) by increasing temperature, thereby causing the recognition cavity to transition from a closed to an open state.

View Article and Find Full Text PDF

As a key mitochondrial Ca transporter, NCLX regulates intracellular Ca signalling and vital mitochondrial processes. The importance of NCLX in cardiac and nervous-system physiology is reflected by acute heart failure and neurodegenerative disorders caused by its malfunction. Despite substantial advances in the field, the transport mechanisms of NCLX remain unclear.

View Article and Find Full Text PDF

Supercoiled (Sc) circular DNA, such as plasmids, are essential in molecular biology and hold strong therapeutic potential. However, they are typically produced in Escherichia coli, resulting in bacterial methylations, unnecessary sequences, and contaminants that hinder certain applications including clinical uses. These limitations could be avoided by synthesizing plasmids entirely in vitro, but synthesizing high-purity Sc circular DNA biochemically remains a significant technical challenge.

View Article and Find Full Text PDF