Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Methanol poisoning poses significant health risks, particularly in less developed countries, where adulterated alcoholic beverages often lead to severe morbidity and mortality. Current diagnostic methods, such as gas-liquid chromatography and blood gas analysis, are complex and prohibitively expensive, making them inaccessible in resource-constrained settings. To address this issue, we present a novel, simple, low-cost chemiresistive sensor for the rapid, selective, and ultrasensitive detection of methanol at ultralow concentrations in the presence of high ethanol concentrations. The sensor leverages an extrusion-printed hybrid composite of NU-1000 metal-organic frameworks (MOFs) and graphene, exploiting their unique structural and electronic synergies based on high porosity, functional metal sites of MOFs and graphene's excellent conductivity that enhance sensitivity and selectivity. To further overcome challenges in selectivity, we integrated machine learning algorithms and principal component analysis (PCA), significantly improving the sensor's ability to differentiate methanol from ethanol and other potential interferents. The extrusion printing technique ensures the fabrication of uniform, stable, and durable sensor layers on ceramic substrates, maintaining reproducible performance and stability. Our results demonstrate the sensor's capability to detect methanol vapors at parts-per-billion (ppb) levels in the presence of higher concentration of ethanol (ppm), making it an effective tool for monitoring methanol intoxication through breath analysis. This innovative approach represents a notable advancement in gas sensing technologies, offering a scalable, cost-effective solution for applications in medical diagnostics, industrial monitoring, and consumer safety. This research highlights the potential of extrusion-printed hybrid materials in advancing gas sensing technologies to enhance public health and safety.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssensors.4c03281DOI Listing

Publication Analysis

Top Keywords

detection methanol
8
alcoholic beverages
8
extrusion-printed hybrid
8
gas sensing
8
sensing technologies
8
methanol
6
machine learning-enhanced
4
learning-enhanced chemiresistive
4
chemiresistive sensors
4
sensors ultra-sensitive
4

Similar Publications

Background: The whole plant of Evolvulus nummularius is traditionally used to treat helminth infections in Assam, India. This study was taken to evaluate the efficacy of its methanolic extract in suitable models in vitro and in vivo.

Methods: Hymenolepis diminuta exposed in vitro to E.

View Article and Find Full Text PDF

White sour soup (WSS) is a traditional fermented food from Guizhou, China. To address the issues of long fermentation cycles, inconsistent quality, and safety risks, this study screened core strains based on microbial diversity. Analysis of 20 WSS samples revealed , , and as dominant genera, with eight harmful microorganisms detected in naturally fermented samples.

View Article and Find Full Text PDF

Electrocatalytic water oxidation with bioinspired cubane-type Co complexes.

Dalton Trans

September 2025

Instituto de Química, Universidad Nacional Autónoma de México, Circuito Interior, CU, Ciudad de México, 04510, Mexico.

Synthesis, characterization, and electrocatalytic water oxidation studies of the cubane-type complexes [(μ-)CoCl(MeOH)] (1) and [(μ-)CoCl(MeOH)] (2) are herein reported. Cubanes 1 and 2 were obtained in high yields under mild conditions by self-assembly of the ligands = 1--2-benzimidazolylmethanol and = 1-methyl-2-benzimidazolylmethanol with CoCl·6HO in basic methanolic solution. Both compounds feature a cubane-type structure in which the central {CoO} units are built by four Co centers coordinated by alkoxide-bridged oxygen and nitrogen atoms from the deprotonated ligands and stabilized by MeOH molecules and chloride ions.

View Article and Find Full Text PDF

PFAS in plant-biosolids-soil systems: Distribution, fractionation, and effects on soil microbial communities.

J Hazard Mater

September 2025

Department of Environmental & Sustainable Engineering, University at Albany, State University of New York, Albany, NY 12222, United States. Electronic address:

This study examined the behavior of six U.S. Environmental Protection Agency (EPA) regulated per- and polyfluoroalkyl substances (PFAS) compounds in vegetated soils amended with Class A and Class B biosolids.

View Article and Find Full Text PDF

On-site accurate and real-time monitoring of trace chemical warfare agents is a critical component of national security surveillance. In this study, a photoionization-induced chemical ionization time-of-flight mass spectrometry is developed for the detection of trace gaseous chemical warfare agents under ambient conditions. Firstly, a benzene-toluene-xylene mixture standard gas is utilized to optimize the instrument parameters, followed by screening of dopants for chemical warfare agents detection, with methanol ultimately identified as the optimal dopant.

View Article and Find Full Text PDF