Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: Recurrent seizures lead to self-reconstruction of the central nervous system, which is termed the neuroplasticity of epilepsy. While preclinical studies implicate neuroinflammation and oxidative stress in epilepsy-associated neuroplasticity, in vivo molecular-level evidence in humans is lacking.

Patients And Methods: We used astrocyte-derived extracellular vesicles (ADEVs) and neuron-derived extracellular vesicles (NDEVs) as brain-derived biomarkers to explore biomarkers of neuroplasticity, neuroinflammation, and oxidative stress. A total of 50 patients in the epilepsy group (EP) and 25 matched healthy controls (HC) were recruited for this study. Plasma ADEVs and NDEVs were isolated and confirmed, and the levels of the EV marker CD81, the neuroplasticity marker brain-derived neurotrophic factor (BDNF), and the neuroinflammation marker tumor necrosis factor α (TNF-α) in ADEVs, as well as the markers of oxidative stress, superoxide dismutase 1 (SOD1) and malondialdehyde (MDA), in NDEVs were measured.

Results: BDNF levels in ADEVs and SOD1 levels in NDEVs from EP were significantly lower than those in HC, whereas TNF-α levels in ADEVs and MDA levels in NDEVs were significantly increased, and the results remained stable after normalization by CD81. Spearman correlation analysis revealed that BDNF levels in ADEVs were negatively correlated with TNF-α levels in ADEVs and MDA levels in NDEVs and positively correlated with SOD1 levels in NDEVs.

Conclusion: The innovative use of ADEVs and NDEVs as brain-derived biomarkers in this study provides in vivo evidence that epilepsy may result in impaired neuroplasticity and may be associated with increased neuroinflammation and oxidative stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12146889PMC
http://dx.doi.org/10.2147/IJN.S514559DOI Listing

Publication Analysis

Top Keywords

oxidative stress
20
neuroinflammation oxidative
16
levels adevs
16
extracellular vesicles
12
levels ndevs
12
levels
9
neuroplasticity epilepsy
8
vivo evidence
8
adevs
8
ndevs brain-derived
8

Similar Publications

Associations between element mixtures and biomarkers of pathophysiologic pathways related to autism spectrum disorder.

J Trace Elem Med Biol

September 2025

Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China. Electronic address:

Objective: We previously documented that exposure to a spectrum of elements is associated with autism spectrum disorder (ASD). However, there is a lack of mechanistic understanding as to how elemental mixtures contribute to the ASD development.

Materials And Methods: Serum and urinary concentrations of 26 elements and six biomarkers of ASD-relevant pathophysiologic pathways including serum HIPK 2, serum p53 protein, urine malondialdehyde (MDA), urine 8-OHdG, serum melatonin, and urine carnitine, were measured in 21 ASD cases and 21 age-matched healthy controls of children aged 6-12 years.

View Article and Find Full Text PDF

Myocardial injury constitutes a life-threatening complication of sepsis, driven by synergistic oxidative-inflammatory pathology involving dysregulated production of reactive oxygen species (ROS), reactive nitrogen species (RNS), and proinflammatory cytokines. This pathophysiological cascade remarkably elevates morbidity and mortality rates in septic patients, emerging as a key contributor to poor clinical outcomes. Despite its clinical significance, no clinically validated therapeutics currently exist for managing septic cardiomyopathy.

View Article and Find Full Text PDF

Objective: Aim: To evaluate the state of oxidation processes and morphological changes in the heart of rats with chronic hypodynamia during the development of epinephrine heart damage (EHD)..

Patients And Methods: Materials and Methods: The study was performed on 144 white male Wistar rats.

View Article and Find Full Text PDF

Hepatic ischaemia-reperfusion (IR) injury is a serious clinical issue, especially in patients with type 2 diabetes mellitus (T2DM). As mitochondria play a critical role in the regulation of IR-induced liver damage, mitochondria-targeted treatment is of the utmost significance for improving outcomes. The present study explored the mitoprotective role of combined ginsenoside-MC1 (GMC1) and irisin administration in diabetic rats with hepatic IR injury.

View Article and Find Full Text PDF

Background: Cardiac ischemia reperfusion (I/R) injury is a serious consequence of reperfusion therapy for myocardial infarction (MI). Peptidylarginine deiminase 4 (PAD4) is a calcium-dependent enzyme that catalyzes the citrullination of proteins. In previous studies, PAD4 inhibition protected distinct organs from I/R injury by preventing the formation of neutrophil extracellular traps (NETs) and attenuating inflammatory responses.

View Article and Find Full Text PDF