Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The development of drugs for nervous diseases poses distinctive difficulties owing to the incomplete understanding of the physiology and complex pathogenesis of the multifaceted central (CNS) and peripheral (PNS) nervous systems. Conventional animal tests and in vitro two-dimensional (2D) cell cultures fail to reproduce the sophisticated structure of natural human tissues, hindering the new drug discovery process. The emerging three-dimensional (3D) neural tissue models, including organoids, organ-on-chip and 3D-printed neural scaffolds, can provide an improved reproduction of the critical features, structural complexity, biological functions, dynamic circulation micro-environment and cell-matrix/cell interactions of the nervous systems. This review examines state-of-the-art 3D models for neural physiology/pathology, emphasizing their drug development applications. Fundamental advantages of various in vitro 3D neural models for investigating the mechanisms of nerve regeneration and disorders in both the CNS and PNS are compared in terms of the different modeling techniques. In addition, the applications of 3D neural models in drug development are summarized covering a range of areas such as disease modeling for basic research, pharmacokinetic and pharmacodynamic testing for drug screening and drug safety evaluation. Furthermore, current challenges and future outlook of biomimetic models and the existing bottlenecks hindering their successful translation into clinical use are discussed. STATEMENT OF SIGNIFICANCE: This review highlights the groundbreaking potential of 3D neural models-organoids, organ-on-chip, and 3D-printed scaffolds-to revolutionize neurological research and drug development. Unlike conventional methods, these models replicate the intricate structure and function of the human nervous system, enabling precise study of diseases like Alzheimer's, spinal injuries, and brain tumors. By summarizing and discussing recent advancements, the review compares techniques, their applications in drug screening and personalized medicine, and addresses challenges in model accuracy and scalability. Bridging neuroscience, engineering, and pharmacology, this work provides a roadmap for researchers to innovate therapies. The insights presented are critical for accelerating drug discovery and improving treatment outcomes, making 3D neural models essential for scientists and clinicians tackling neurological disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2025.06.013DOI Listing

Publication Analysis

Top Keywords

drug development
16
neural models
12
drug
9
nervous system
8
neural
8
nervous systems
8
drug discovery
8
organ-on-chip 3d-printed
8
drug screening
8
models
7

Similar Publications

Background: High-density lipoprotein (HDL) function, rather than its concentration, plays a crucial role in the development of coronary artery disease (CAD). Diminished HDL antioxidant properties, indicated by elevated oxidized HDL (nHDL) and diminished paraoxonase-1 (PON-1) activity, may contribute to vascular dysfunction and inflammation. Data on these associations in CAD patients, including acute coronary syndrome (ACS), remain limited.

View Article and Find Full Text PDF

Objective: This study aimed to assess the potential risk of Bullous pemphigoid (BP) associated with antidiabetic agents, antimicrobials, diuretics, immune checkpoint inhibitors, and biological agents.

Research Design And Methods: A retrospective pharmacovigilance data analysis was conducted using the FDA Adverse Event Reporting System (FAERS) between Q1/2004 and Q3/2024. Disproportionality analyses, viz.

View Article and Find Full Text PDF

Background: Tacrolimus is a commonly used immunosuppressant with well-defined side effects, including hypertriglyceridemia and hyperglycaemia. However, acute pancreatitis is still not widely recognized as an adverse event related to tacrolimus.

Case Presentation: A 60-year-old male was admitted to the intensive care unit with symptoms and signs of acute pancreatitis.

View Article and Find Full Text PDF

Species-specific gene expression manipulation in humanized livers of chimeric mice via siRNA-encapsulated lipid nanoparticle treatment.

Mol Ther Methods Clin Dev

June 2025

Eisai Co., Ltd., Tsukuba Research Laboratories, 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan.

Liver-humanized chimeric mice (PXB-mice) are widely utilized for predicting human pharmacokinetics (PK) and as human disease models. However, residual metabolic activity of mouse hepatocytes in chimeric mice can interfere with accurate human PK estimation. Lipid nanoparticle (LNP)-formulated small interfering RNA (siRNA) treatment makes it possible to eliminate the shortcomings of chimeras and create new models.

View Article and Find Full Text PDF

Plants, Pills, and the Brain: Exploring Phytochemicals and Neurological Medicines.

Int J Plant Anim Environ Sci

August 2025

Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA.

Neurological disorders, such as Alzheimer's disease, Parkinson's disease, epilepsy, spinal cord injuries, and traumatic brain injuries, represent substantial global health challenges due to their chronic and often progressive nature. While allopathic medicine offers a range of pharmacological interventions aimed at managing symptoms and mitigating disease progression, it is accompanied by limitations, including adverse side effects, the development of drug resistance, and incomplete efficacy. In parallel, phytochemicals-bioactive compounds derived from plants-are receiving increased attention for their potential neuroprotective, antioxidant, and anti-inflammatory properties.

View Article and Find Full Text PDF