Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Insulators are cis-regulatory elements that separate transcriptional units, whereas silencers are elements that repress transcription regardless of their position. In plants, these elements remain largely uncharacterized. Here, we use the massively parallel reporter assay Plant STARR-seq with short fragments of 8 large insulators to identify more than 100 fragments that block enhancer activity. The short fragments can be combined to generate more powerful insulators that abolish the capacity of the strong viral 35S enhancer to activate the 35S minimal promoter. Unexpectedly, when tested upstream of weak enhancers, these fragments act as silencers and repress transcription. Thus, these elements are capable of insulating or repressing transcription, depending on the regulatory context. We validate our findings in stable transgenic Arabidopsis thaliana, maize (Zea mays), and rice (Oryza sativa) plants. The short elements identified here should be useful building blocks for plant biotechnology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12164753PMC
http://dx.doi.org/10.1093/plcell/koaf084DOI Listing

Publication Analysis

Top Keywords

repress transcription
8
short fragments
8
elements
6
small dna
4
dna elements
4
insulators
4
elements insulators
4
insulators silencers
4
silencers plants
4
plants insulators
4

Similar Publications

SlBES1-mediated brassinosteroid signaling suppresses flavonoid biosynthesis in tomato fruit.

Plant Commun

September 2025

Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China. Electronic address:

With the improvement of living standards, consumers' demands for color diversity and nutritional quality of tomato products have increased. Flavonoid is a considerable index of peel color and nutritional quality in tomato fruit, where flavonoid biosynthesis is controlled by various phytohormones, including brassinosteroids (BRs). However, the underlying mechanism by which BR regulates flavonoid biosynthesis is still unknown.

View Article and Find Full Text PDF

Sugar metabolism is commonly implicated as crucial in the transition between growth and cessation during winter; however, its exact role remains elusive. The evergreen iris (Iris japonica) ceases growth in winter without entering endodormancy, yet it continues to sustain sugar metabolism and transport throughout the season. Here, we elucidate the mechanisms underlying the sugar-mediated growth transition-the shift between growth and cessation-in I.

View Article and Find Full Text PDF

Circadian oscillations of gene transcripts rely on a negative feedback loop executed by the activating BMAL1-CLOCK heterodimer and its negative regulators PER and CRY. Although circadian rhythms and CLOCK protein are mostly absent during embryogenesis, the lack of BMAL1 during prenatal development causes an early aging phenotype during adulthood, suggesting that BMAL1 performs an unknown non-circadian function during organism development that is fundamental for healthy adult life. Here, we show that BMAL1 interacts with TRIM28 and facilitates H3K9me3-mediated repression of transposable elements in naïve pluripotent cells, and that the loss of BMAL1 function induces a widespread transcriptional activation of MERVL elements, 3D genome reorganization and the acquisition of totipotency-associated molecular and cellular features.

View Article and Find Full Text PDF

In most eubacteria the initiator protein DnaA triggers chromosomal replication by forming an initiation complex at the origin of replication and also functions as a transcriptional regulator, coordinating gene expression with cell cycle progression. While DnaA-regulated genes are relatively well characterized in exponentially growing cells, its role in gene regulation during stationary phase remains insufficiently explored. Here, using an aquatic bacterium Caulobacter crescentus as a model, we show that C.

View Article and Find Full Text PDF

Integrative multi-omics and genomic prediction reveal genetic basis of early salt tolerance in alfalfa.

J Genet Genomics

September 2025

State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangd

The genetic basis of early-stage salt tolerance in alfalfa (Medicago sativa L.), a key factor limiting its productivity, remains poorly understand. To dissect this complex trait, we integrate genome-wide association study (GWAS) and transcriptomics (RNA-seq) from 176 accessions within a machine learning based genomic prediction framework.

View Article and Find Full Text PDF